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Motivations
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Despite the variety of approaches and theoretical models tested in physical experiments, what
they all have in common is the very large volume of complex data they produce

This data challenge calls for powerful computing methods like Machine Learning and Deep 
Learning

GPU parallelization and memory capacity allow to drastically reduce computational time 



Introduction: NA62 experiment
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Introduction: Giga Tracker Stations

8

Z(cm)

GTK0 GTK1

GTK2

5 719 1558

6

GTK3

Y(cm)



Proposal

10



11

Multi-Layer Perceptron Transformer Graph Neural Network
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Transformer Graph Neural Network

Multi-Layer Perceptron

* Image from Dive into Deep Learning, chapter 5

MLP is an architecture made up of  composable and 
differentiable layers that optimizes its weights (W, b)  by 
means of Back-Propagation to minimize a loss function L.

ො𝑜 = f x = 𝜎 2(𝑊 2 𝜎 1 𝑊 1 𝑥 + 𝑏 1 + 𝑏 2)

W*, b* =  argmin L( o, ො𝑜)

where 𝜎 𝑖𝑠 𝑎𝑛 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
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Transformer Graph Neural Network

Multi-Layer Perceptron
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Transformer Graph Neural Network

Multi-Layer Perceptron
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Multi-Layer Perceptron

Admissible track combinations
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Multi-Layer Perceptron

Admissible track combinations

Not admissible track combination
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Multi-Layer Perceptron

Admissible track combinations

Not admissible track combination
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Multi-Layer Perceptron

[ x, y, z, time]
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Multi-Layer Perceptron

0.76 0.24

… ...

... …

0.13 0.87

0.94 0.06

[ x, y, z, time]

Existence Score 1- Existence Score
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Multi-Layer Perceptron: results

Efficiency   = 
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑟𝑎𝑐𝑘𝑠

# 𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑒 𝑡𝑟𝑎𝑐𝑘𝑠

Purity        = 
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑟𝑎𝑐𝑘𝑠

# 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑟𝑎𝑐𝑘𝑠

Fake Tracks   = 
# 𝑤𝑟𝑜𝑛𝑔𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑟𝑎𝑐𝑘𝑠

# 𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑒 𝑡𝑟𝑎𝑐𝑘𝑠

Efficiency Purity Fake Tracks

70.06 % 92.3 % 39.45 %

• NA62 MC reproducing the datataking condition in 2022
• 200156  events  {-10 ns, +10 ns} wrt KTAG reference time
• The models were implemented on an RTX 3060Ti Trio with 

8 GB equipped with a Ryzen 7 3700X CPU
• 60% Train, 20% Validation, 20% Test
• Training on Train Set 
• Hyper-parameters using Validation Set
• Results on Test Set
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Multi-Layer Perceptron: conclusion

• Poor Performances

• Big GPU memory needed to store all admissible combinations

• Slow computations 

• Class Imbalance

• Local awareness



22

Multi-Layer Perceptron Transformer Graph Neural Network
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Multi-Layer Perceptron Graph Neural Network

Transformer

Presented in 2017 and now widely adopted
due this their incredible performances and 
parallelization.

They represented a revolution in Natural 
Language Processing, Computer Vision and 
Multimodal Learning
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Multi-Layer Perceptron Graph Neural Network

Transformer

Encoder: processes the input sequence by applying 
self-attention to capture relationships between all 
tokens in the sequence. It then passes the resulting 
representations through feed-forward layers to create 
a context-aware representation of the input data

Decoder: uses this representation to generate the 
output sequence, often performing tasks like 
translation or text generation

Note: we used only the Encoder
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Global awareness with   
Transfomer

Local awareness

If we have n hits per station, we will create:
- n4 (GTK0-GTK1-GTK2-GTK3)
- n3 (GTK0-GTK2-GTK3)
- n3 (GTK1-GTK2-GTK3)
Total: n4+2n3

Transformer

What if move the problem from tracks to 
edges?
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Transformer

Binary Classification

The number of candidates we need to 
evaluate is (4n)2 =16n2 << n4+2n3
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Transformer
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Transformer
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Transformer
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Transformer
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Transformer

0.99 0.01

… …

… …

… …

0.12 0.88

… …

… …

0.99 0.01
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Transformer

0.99

0.870.87

Max Edge selection
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Efficiency   = 
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑟𝑎𝑐𝑘𝑠

# 𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑒 𝑡𝑟𝑎𝑐𝑘𝑠

Purity        = 
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑟𝑎𝑐𝑘𝑠

# 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑟𝑎𝑐𝑘𝑠

Fake Tracks   = 
# 𝑤𝑟𝑜𝑛𝑔𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑟𝑎𝑐𝑘𝑠

# 𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑒 𝑡𝑟𝑎𝑐𝑘𝑠

Efficiency Purity Fake Tracks

70.06 % 92.3 % 39.45 %

Multi-Layer Perceptron

Efficiency Purity Fake Tracks

95.95 % 98.62 % 1.22 %

Transformer

Transformer
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Transformer

Efficient computations

Solved class imbalance

Global awareness

Many computations to consider all the connections
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Multi-Layer Perceptron Transformer Graph Neural NetworkTransformer
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Multi-Layer Perceptron TransformerTransformer

Graph Neural Network

Graph Neural Networks are a type of neural network designed to work with graph-structured data. 

They propagate and aggregate information across nodes and edges in a graph, allowing them to learn 
representations that capture the relationships and structure within the data

* Image from "Representation Learning on Graphs: Methods and Applications" 
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Multi-Layer Perceptron TransformerTransformer

Graph Neural Network

Many computations to consider all the connections

Graphs allow to decide the topology (e.g. the connections between nodes)
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Graph Neural Network
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Graph Neural Network

Complete Graph

Sparse Graph

If we consider possible edges between hits:
- 2n2 ( GTK0-GTK1 and GTK0-GTK2)
- n2 (GTK1-GTK2)
- n2 (GTK2-GTK3)
Total: 4n2 < 16n2
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Graph Neural Network
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Graph Neural Network
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Graph Neural Network

0.99 0.01

0.13 0.87

… …

… …

… …

0.99 0.01

Single 
Classifier



44

Graph Neural Network
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Graph Neural Network

0.99 0.01

0.13 0.87
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Graph Neural Network

Efficiency   = 
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑟𝑎𝑐𝑘𝑠

# 𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑒 𝑡𝑟𝑎𝑐𝑘𝑠

Purity        = 
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑟𝑎𝑐𝑘𝑠

# 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑟𝑎𝑐𝑘𝑠

Fake Tracks   = 
# 𝑤𝑟𝑜𝑛𝑔𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑟𝑎𝑐𝑘𝑠

# 𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑒 𝑡𝑟𝑎𝑐𝑘𝑠

Efficiency Purity Fake Tracks

70.06 % 92.3 % 39.45 %

Multi-Layer Perceptron

Efficiency Purity Fake Tracks

95.95 % 98.62 % 1.22 %

Transformer

Efficiency Purity Fake Tracks

94.78 % 99.78 % 0.21 %

Graph Neural Network*

* Direct, Fully-connected graph with Graph Convolutional Network and Multi-Classifier
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Graph Neural Network

𝝌2 =  min
𝑘=0,1,2,3

 min
1≤𝑖<𝑗≤𝑛

[(x
 i,k 

−x j,k)2 +(y i,k−y j,k)2+(t i,k− t j,k)2] 

Difficulty Score
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Graph Neural Network

Example of an error Example of a good prediction 
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Graph Neural Network

Solved class imbalance

Global awareness

Flexible Topology

Computationally Efficient
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Graph Neural Network
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Graph Neural Network
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Multi-Layer Perceptron Transformer Graph Neural NetworkTransformer
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• Machine Learning algorithms can be used to track particles

• 3 different algorithms were proposed ( MLP, Transformer, Graph Neural Network)

Conclusions
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This project was based on Monte Carlo simulations kindly 
provided by the NA62 Collaboration.

Acknowledgments
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