A new hydrogen-filled Cherenkov detector for Kaon tagging at the NA62 experiment at CERN

Adam Tomczak on behalf of the NA62 Collaboration

Workshop Italiano sulla Fisica ad Alta Intensita, Bologna

November 13, 2024

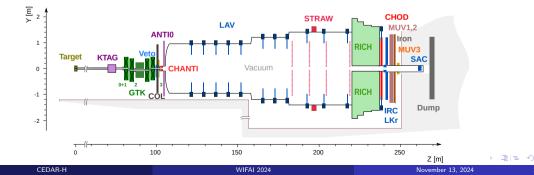
ELE DOO

The NA62 experiment at CERN

- Fixed target kaon experiment located in the CERN North Area JINST 12.05 (2017), P05025
- Main goal: measurement of $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ to $\mathcal{O}(10\%)$ precision
- SM prediction yields (8.60 \pm 0.42) imes 10⁻¹¹ EPJC 82 (2022) 7, 615
- Ongoing data taking, data collected in 2016-18 and 2021-22 gives signal significance > 5

See Gemma's talk tomorrow

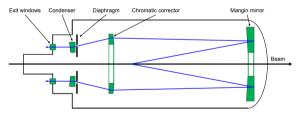
Broad physics program: exotics searches, rare and forbidden K^+ decays & other


See Ilarias' talks: yesterday and Friday

The NA62 detector

- Unseparated hadron beam of $75 \,\text{GeV}/c$ from SPS protons on a Be target
- Decay in-flight technique, with the decay region enclosed in a large vacuum tank
- Upstream: kaon identification by KTAG and momentum measured by GTK (silicon pixel tracker)
- Downstream: STRAW (charged particle spectrometer), PID detectors (RICH, LKr, MUVs), CHOD (timing hodoscope), photon vetoes (SAC, IRC, LAV) and additional vetoes

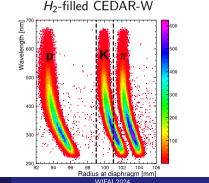
Kaon identification criteria at NA62



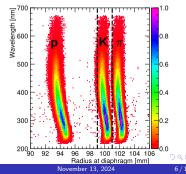
- The NA62 beam is a 75 GeV/c unserparated hadron beam with intensity 750 MHz
- Beam composition: 23% p, 6% K^+ and 70% π^+
- The kaons must be unambiguously identified with the following requirements:
 - **I** Kaon identification efficiency $\eta(K^+) > 95\%$
 - **2** Pion misidentification probability $< 10^{-4}$
 - \blacksquare Time resolution of $< 100 \, \text{ps}$
 - Rate capability of 45 MHz
- First two conditions are satisfied by a ChErenkov Differential counter with Achromatic Ring focus (CEDAR) detector, which are widely used at CERN since the 1980s CERN Report: CERN-82-13
- A custom photo-detection system was designed to satisfy the latter two, with the whole system referred to as the KTAG NIMA 801 (2015). 86

The CEDAR detector

- Cherenkov light due to passage of beam particles selected by an annular diaphragm slit, centered at r = 100 mm and of variable width ($\sim 2 \text{ mm}$ default), is read out
- The refractive index of the radiator medium, *n* is controlled by the choice of gas, pressure and temperature and defines which particle species is "tagged" for a fixed beam momentum
- Correction of chromatic dispersion crucial for achieving target efficiency



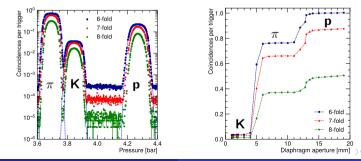
- For a standard CEDAR, the light is collected by 8 PMTs, positioned behind the exit windows
- In the NA62 setup, the light from each window is reflected radially outwards towards a sector (octant) of the KTAG, instrumented with 48 photomultipliers


Motivation for the CEDAR-H

- **NA62**
- Beam pions scattered by interaction with the NA62 beamline upstream of the decay region are a significant source of background for the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay
- The N_2 -filled CEDAR-W (previously used) was the largest contributor to the upstream material budget, with 3.9 % X_0 (3.5 % X_0 due to the radiator gas)
- \blacksquare For a hydrogen-filled CEDAR, the radiator gas contribution reduces to 0.73 $\%~X_0$

New optical system required due to the dispersive properties of hydrogen and required separation of the K⁺ and π⁺ light rings

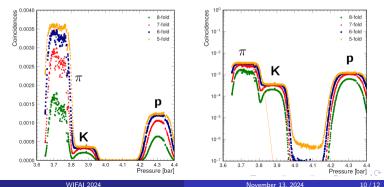
CEDAR-H development and design


- The position of optical components was fixed to those of a CEDAR-N (He at high pressures)
- Iterative optimisation of the optical properties of the components performed numerically at the University of Birmingham, using a full GEANT4 simulation of the detector
- The study was carried out for various hydrogen pressures aiming at the maximising the photon yield
- A complete description of the CEDAR-H available in JINST 19 (2024) 05, P05005
- Detector was constructed at CERN in 2022, all optical components aligned

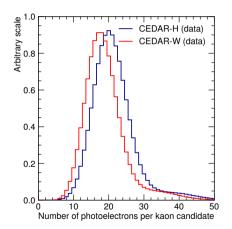
CEDAR-H test beam at CERN

- CEDAR-H installed on the H6 beamline at CERN in October 2022, with 8 PMTs as readout
- A pair of scintillator counters positioned on both ends used for triggering
- Coincident signals from at least $N \ge 5$ PMTs used to "tag" target particle species
- Working on a 75 GeV/c unseparated hadron beam derived from SPS proton beam
- The beam composition of 25% p, 4% K^+ and 71% π^+ was verified with a pressure scan and a diaphragm scan at the kaon peak pressure of 3.85 bar
- Pion misidentification probability calculated as < 10⁻⁴ by extrapolating the edges of the pion peak
- Average of 19.1 detected photons per kaon, calculated from coincidence ratios

Installation at the NA62 experiment


- The KTAG was installed on the CEDAR-H, with the whole system put into the ECN3 cavern during the 2022-2023 YETS
- Comprehensive safety infrastructure in place to mitigate the risk associated with using hydrogen
 - The KTAG enclosure, housing PMs and readout electronics, flushed with nitrogen
 - \blacksquare Explosive atmosphere (ATEX) zone introduced about ${\sim}1\,m$ around the detector
 - Hydrogen concentration sensors installed over both ends of the CEDAR-H vessel

Detector commissioning at NA62



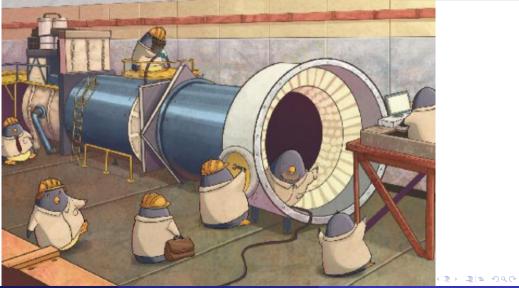
- Pressure scan performed with reduced beam intensity, confirming the beam composition and defining the operational kaon peak pressure as 3.88 bar
- Fine alignment to the beam direction (within $\pm 7 \mu rad$) achieved by maximising the observed number of photons per kaon candidate
- Kaon candidate constructed from hits in at least 5 octants of the KTAG within a 4 ns window
- The mean number of detected photons per kaon candidate was 21.7
- Pion misidentification probability
 < 10⁻⁴, as computed from the fitted tail of the pion peak

CEDAR-H performance in 2023 and 2024

- The upgraded KTAG detector successfully collected data throughout 2023 and 2024 campaigns
- The long-term performance with the CEDAR-H surpassed that of the previously used *N*₂-filled CEDAR-W
- Number of photons per kaon candidate (2 ns window), $N_{\gamma} = 20.6$
- Efficiency of kaon detection, as evaluated from $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ events, $\eta(K^+) = 99.7\%$
- Resolution of the kaon crossing time, $\sigma_t(K^+) = 300 \text{ps}/\sqrt{N_\gamma} \simeq 65 \text{ps}$
- Pion misidentification probability $< 10^{-4}$

ELE DOO

NA62


Conclusion

- A new CEDAR detector was proposed for the NA62 experiment to minimise the material in the path of the beam by changing the radiator gas to hydrogen
- The optical system of the new CEDAR-H was optimised using a full simulation of the detector
- The CEDAR-H was constructed and validated during a test beam at CERN in 2022
- The detector was commissioned at the NA62 experiment for the 2023 data-taking campaign and operated in 2023 and 2024 with an efficiency of 99.7% and a timing resolution of ~65 ps
- The performance of the KTAG with the CEDAR-H surpasses both the kaon tagging requirements of NA62 and the performance of with the N₂-filled CEDAR-W
- The total amount of upstream material in the path of the beam was reduced by > 50%, significantly decreasing the fraction of the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ trigger bandwidth occupied by events with scattered beam particles
- The reduction of material in the path of the beam benefits
 - the ${\cal K}^+ o \pi^+
 u ar
 u$ analysis (less potential background)
 - the concurrently collected data for other K^+ channels (lower trigger downscalings allowed)

Supplemental material

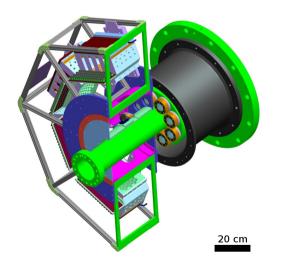
CEDAR-H

November 13, 2024

1/3

Test beam

CEDAR-H


November 13, 2024

2/3

212 DQC

KTAG

CEDAR-H

November 13, 2024

3/3