CONNECTING LOW- AND HIGH-ENERGY OBSERVABLES AT FUTURE COLLIDERS

Scantamburlo Enrico

PhD Project Funded by PNRR – INFN Padova/Bologna Work in progress with Paradisi Paride (PD) and Pagani Davide (BO)

Standard Model

Future Colliders

New physics searches in collider experiments (like LHC), **absence** of signal suggests the possibility of **heavy** new physics well above the electroweak scale.

New generation of particle accelerators at **higher energy** and **intensities**, would improve the sensitivity on deviations from the SM.

UON Collider Collaboration

FCC-ee:

- e^+e^- collider, $E_{cm} \sim 80-400 \text{ GeV}$
- Higgs and EW factory
- Precision measurements

IMCC:

- μ collider
- Small synchrotron radiation
- $E_{cm} \sim 3-10 \text{ TeV}$

G. Bernardi et al., "The Future Circular Collider: a Summary for the US 2021 Snowmass Process" C. Accettura et al. "Interim report for the International Muon Collider Collaboration (IMCC)"

Charged Lepton Flavor Violation (CLFV)

Current CLFV bounds point towards a high NP scale $\Lambda_{\rm LFV} \gg M_{\rm W}$

Effective Field Theories & SMEFT

EFT:

Model independent way to parametrize the effects of heavy new physics

Heavy fields live at a scale $\Lambda_{\rm LFV}$ much higher than current experiments energies

In a bottom-up approach, infinite tower of higher dimensional operators:

- built from SM fields
- satisfy SM symmetries

$$\mathcal{L}_{EFT} = \mathcal{L}_{d=4} + \sum_{d>4} \sum_{i} \frac{C_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

SM as a low-energy limit of an unknown UV completion

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda} \sum_{a} C_a^{(5)} Q_a^{(5)} + \frac{1}{\Lambda^2} \sum_{a} C_a^{(6)} Q_a^{(6)} + \dots$$

A lonely dim-5 operator, Weinberg operator

A plethora of dim-6 operators (2499) giving rise to several FCNC processes

Focusing on CLFV, the analysis reduces to consider 4 operator classes

CLFV Operators in SMEFT

Crivellin, A. and Najjari, S. and Rosiek, J., "Lepton flavor violation in the Standard Model with general dimension-six operators"

Low/High Energy Interplay

Combination of limits from different processes in the SMEFT framework

CLFV Signal & Background

Mogens Dam,"Tau-lepton Physics at the FCC-ee circular e⁺e⁻ Collider"

Future colliders sensitivity at 95% C.L. by

 $N_{\rm sig} \ge 2\sqrt{N_{\rm bkg} + N_{\rm sig}}$

Dominant background from the Z decays nearby the Z resonance

Cut on the electron momentum to select the correct signal

Decay channels like $\tau \rightarrow 3e$ are background free

7/10

et al..

Colliders"

Parameter Space Constraints

Parameter Space Constraints

Conclusions & Outlooks

- CLFV in the SM is extremely suppressed → any experimental signal would be an anambiguos sign of new physics.
- Heavy new physics effects are conveniently described by the SMEFT.
- Future colliders would improve the limits on the SMEFT coefficients w.r.t. low energy experiments.

- Improve the theoretical accuracy including **running effects**.
- Improve the studies for a **muon collider**, LHC-HL and other colliders.

Thank you for the attention!

Current Bounds From Experiments

cLFV obs.	Present uppe	er bounds $(90\% \mathrm{CL})$			
${\rm BR}(\mu \to e \gamma)$	3.1×10^{-13}	MEG II (2023)	${\rm BR}(\tau \to e \eta)$	$9.2 imes 10^{-8}$	Belle (2007)
$BR(\mu \to eee)$	1.0×10^{-12}	SINDRUM (1988)	$BR(\tau \to e\eta')$	$1.6 imes 10^{-7}$	Belle (2007)
$\operatorname{CR}(\mu \to e, \mathbf{S})$	7.0×10^{-11}	Badertscher $et \ al. \ (1982)$	$\mathrm{BR}(\tau \to e\pi\pi)$	2.3×10^{-8}	Belle (2012)
$CR(\mu \rightarrow e, Ti)$	4.3×10^{-12}	SINDRUM II (1993)	$\mathrm{BR}(\tau \to e\omega)$	2.4×10^{-8}	Belle (2023)
$\operatorname{CR}(\mu \to e, \operatorname{Pb})$	4.6×10^{-11}	SINDRUM II (1996)	$\mathrm{BR}(\tau \to e\phi)$	2.0×10^{-8}	Belle (2023)
$\mathrm{CR}(\mu \to e, \mathrm{Au})$	7.0×10^{-13}	SINDRUM II (2006)	$BR(\tau \to \mu \gamma)$	4.2×10^{-8}	Belle (2021)
${\rm BR}(\pi^0 \to \mu^- e^+)$	3.2×10^{-10}	NA62 (2021)	$\mathrm{BR}(\tau \to \mu \mu \bar{\mu})$	2.1×10^{-8}	Belle (2010)
${\rm BR}(\pi^0 \to \mu^+ e^-)$	3.8×10^{-10}	E865 (2000)	$BR(\tau \to \mu e \bar{e})$	1.8×10^{-8}	Belle (2010)
${\rm BR}(\pi^0 \to \mu e)$	3.6×10^{-10}	KTeV (2007)	$\mathrm{BR}(\tau \to \mu \pi)$	$1.1 imes 10^{-7}$	BaBar (2006)
$\mathrm{BR}(\eta \to \mu e)$	$6.0 imes 10^{-6}$	Saturne SPES2 (1996)	${\rm BR}(\tau\to \mu\eta)$	$6.5 imes 10^{-8}$	Belle (2007)
$\mathrm{BR}(\eta' \to \mu e)$	4.7×10^{-4}	CLEO (2000)	${\rm BR}(\tau \to \mu \eta')$	1.3×10^{-7}	Belle (2007)
$\mathrm{BR}(\phi \to \mu e)$	2.0×10^{-6}	SND (2009)	$\mathrm{BR}(\tau \to \mu \pi \pi)$	2.1×10^{-8}	Belle (2012)
$BR(\tau \to e\gamma)$	$3.3 imes 10^{-8}$	BaBar (2010)	$\mathrm{BR}(\tau \to \mu \omega)$	3.9×10^{-8}	Belle (2023)
$BR(\tau \to e e \bar{e})$	2.7×10^{-8}	Belle (2010)	$\mathrm{BR}(\tau \to \mu \phi)$	2.3×10^{-8}	Belle (2023)
$BR(\tau \to e \mu \bar{\mu})$	2.7×10^{-8}	Belle (2010)	$BR(\tau \to e e \bar{\mu})$	$1.5 imes 10^{-8}$	Belle (2010)
$\mathrm{BR}(\tau \to e\pi)$	8.0×10^{-8}	Belle (2007)	$BR(\tau \to \mu \mu \bar{e})$	$1.7 imes 10^{-8}$	Belle (2010)

Ardu, Marco and Pezzullo, Gianantonio, "Introduction to Charged Lepton Flavor Violation"

Dependence On The C.o.M. Energy

[2305.03869] Wolfgang Altmannshofer et al. : cross section of the process $e^+e^- \rightarrow \tau \mu$ as function of the center of mass energy with NP scale set at $\Lambda = 3 \ TeV$ and the Wilson coefficients set to 1.

CLFV Cross Section @ High Energy

$$\begin{split} \sigma(\ell_i \ell_i \to \ell_j \ell_i) &= \frac{s}{12\pi\Lambda^4} \bigg\{ |C_{\ell e}^{iij}|^2 + |C_{\ell e}^{jiii}|^2 + |C_{\ell \ell}^{jiii} + C_{\ell \ell}^{iij}|^2 + |C_{e e e}^{jiii} + C_{e e e}^{iiji}|^2 + \mathcal{O}\left(\frac{m_{l,j}^2}{s}\right) + \\ &+ \frac{9v^2 m_i^2}{16s^2} \left[|\hat{C}_{e H}^{ij}|^2 + |\hat{C}_{e H}^{ji}|^2 + \mathcal{O}\left(\frac{m_h^2}{s}\right) \right] + \\ &- \frac{3vm_i}{8\sqrt{2s}} \left[\Re\{C_{\ell e}^{jiii*} \hat{C}_{e H}^{ji} + C_{\ell e}^{iiji} \hat{C}_{e H}^{ij} \right] + \\ &+ \frac{v^2 e^2}{s} \left(|C_{e\gamma}^{ij}|^2 + |C_{e\gamma}^{ji}|^2 \right) \left(3\log \frac{s^3}{m_t^2(m_j^2 - m_t^2)^2} - 4 \right) + \\ &+ \frac{v^2 g^2}{4s c_W} \left[|C_{eZ}^{ij}|^2 \left(6(g_R^2 + g_L^2) \log \frac{s}{M_Z^2} - 5g_L^2 - 11g_R^2 \right) + \\ &+ |C_{eZ}^{ej2}|^2 \left(6(g_L^2 + g_R^2) \log \frac{s}{M_Z^2} - 11g_L^2 - 5g_R^2 \right) + \mathcal{O}\left(\frac{M_Z^2}{s}\right) \right] + \\ &+ \frac{egv^2}{2s c_W} \left[\Re\{C_{eZ}^{ij} C_{e\gamma}^{ij*}\} \left(6(g_L + g_R) \log \frac{s}{M_Z^2} + g_L - 5g_R \right) + \\ &+ \Re\{C_{eZ}^{ej2} C_{e\gamma}^{ij*}\} \left(6(g_L + g_R) \log \frac{s}{M_Z^2} + g_R - 5g_L \right) + \mathcal{O}\left(\frac{M_Z^2}{s}\right) \right] \right\} + \\ &+ \frac{g^4 v^4}{64\pi M_Z^2 c_W^4 \Lambda^4} \left(g_R^2 + g_L^2 \right) \left[|C_{H\ell}^{(1)ji} + C_{H\ell}^{(3)ji}|^2 + |C_{He}^{ji}|^2 \right] + \\ &+ \frac{g^2 v^2}{48\pi c_W^2 \Lambda^4} \Re\{C_{\ell e}^{jiii*} g_R(C_{H\ell}^{(1)ji} + C_{\ell \ell}^{(3)ji}) + C_{\ell e}^{iij*} g_L C_{He}^{ji} \right\} \log \frac{s}{M_Z^2} + \mathcal{O}\left(\frac{M_Z^2}{s}\right) \end{split} \right] \end{split}$$

A.3

CLFV Decay Rates @ Low Energy

$$\Gamma(h \to \ell_i \ell_j) = \frac{m_h v^4}{32\pi \Lambda^4} \left(|[L_e^{\dagger} C_{e\Phi 3}^{\dagger} R_e]_{ij}|^2 + |[L_e^{\dagger} C_{e\Phi 3}^{\dagger} R_e]_{ji}|^2 \right).$$

$$\Gamma(Z \to \ell_i \ell_j) = \frac{1}{24\pi} M_Z \left[\frac{M_Z^2 v^2}{\Lambda^4} (|C_{eZ}^{ji}|^2 + |C_{eZ}^{ij}|^2) + |a_{ji}^Z|^2 + |b_{ji}^Z|^2 \right].$$

$$\begin{split} \Gamma\left(\ell_{j}^{\pm} \rightarrow \ell_{i}^{\mp}\ell_{l}^{\pm}\ell_{l}^{\pm}\right) = & \frac{m_{j}^{5}}{16 \cdot 192\pi^{3}\Lambda^{4}} \left[4|c_{\ell\ell}^{V,ijll}|^{2} + 4|c_{ee}^{V,ijll}|^{2} + |c_{\ell e}^{V,ijll}|^{2} + |c_{\ell e}^{V,llij}|^{2}\right] + \\ & + \frac{m_{j}^{5}}{64 \cdot 192\pi^{3}\Lambda^{4}} \left[4|c_{\ell\ell}^{S,ijll}|^{2} + 4|c_{ee}^{S,ijll}|^{2} + |c_{\ell e}^{S,ijll}|^{2} + |c_{\ell e}^{S,llij}|^{2}\right]. \end{split}$$

$$\begin{split} \Gamma\left(\ell_{j}^{\pm} \to \ell_{i}^{\pm}\ell_{i}^{\mp}\right) &= \frac{m_{j}^{5}}{16 \cdot 192\pi^{3}\Lambda^{4}} \left[4|c_{\ell\ell}^{V,ijii}|^{2} + 4|c_{\ell e}^{S,ijii}|^{2} + |c_{\ell e}^{V,ijii}|^{2} + |c_{\ell e}^{V,ijii}|^{2}\right] + \\ &+ \frac{m_{j}^{5}}{64 \cdot 192\pi^{3}\Lambda^{4}} \left[4|c_{\ell\ell}^{S,ijii}|^{2} + 4|c_{e e}^{S,ijii}|^{2} + |c_{\ell e}^{S,ijii}|^{2} + |c_{\ell e}^{S,ijii}|^{2}\right] + \\ &+ \frac{m_{j}^{5}}{64 \cdot 192\pi^{3}\Lambda^{4}} \left[4|c_{\ell\ell}^{S,ijii}|^{2} + 4|c_{e e}^{S,ijii}|^{2} + |c_{\ell e}^{S,ijii}|^{2} + |c_{\ell e}^{S,ijii}|^{2}\right] + \\ &+ \frac{m_{j}^{3}e^{2}v^{2}}{192\pi^{3}\Lambda^{4}} \left[\log\frac{m_{j}^{2}}{m_{i}^{2}} - \frac{11}{4}\right) \left(|C_{e\gamma}^{ij}|^{2} + |C_{e\gamma}^{ji}|^{2}\right) + \\ &- \frac{\sqrt{2}m_{j}^{4}ev}{768\pi^{3}} \Re\left[\left(2c_{\ell\ell}^{V,ijii} + c_{\ell e}^{V,ijii} - \frac{1}{2}c_{\ell e}^{S,ijii}\right)C_{e\gamma}^{ij*} + \\ &- \left(2c_{e e}^{V,ijii} + c_{\ell e}^{V,ijii} - \frac{1}{2}c_{\ell e}^{S,ijii}\right)C_{e\gamma}^{ij}\right]. \end{split}$$

$$\Gamma\left(\ell_{j}^{\pm} \to \ell_{z}^{\pm}\ell_{\ell}^{\pm}\ell_{\ell}^{\mp}\right) = \frac{m_{j}^{5}}{8 \cdot 192\pi^{3}\Lambda^{4}} \left[|c_{\ell\ell}^{V,ijii}|^{2} + |c_{\ell e}^{V,ijii}|^{2} + |c_{\ell e}^{V,ijii}|^{2}\right] + \\ &+ \frac{m_{j}^{5}e^{2}v^{2}}{192\pi^{3}\Lambda^{4}} \left[\log\frac{m_{j}^{2}}{m_{i}^{2}} - \frac{1}{3}\right) \left(|C_{e\gamma}^{ij}|^{2} + |c_{\ell e}^{S,ijii}|^{2}\right) + \\ &- \frac{\sqrt{2}m_{j}^{4}ev}{188\pi^{3}} \Re\left[\left(2c_{\ell\ell}^{V,ijii} + c_{\ell e}^{V,ijii} - \frac{1}{2}c_{\ell e}^{S,ijii}\right)C_{e\gamma}^{ij*} + \\ &- \left(2c_{ee}^{V,ijii} + c_{\ell e}^{V,ijii} - \frac{1}{2}c_{\ell e}^{S,ijii}\right)C_{e\gamma}^{ij}\right]. \end{split}$$