

THE CGEM INNER TRACKER OF BESIII G. (

Workshop Italiano sulla Fisica ad Alta intensità

Bologna 12-15 Novembre 2024 Palazzo Hercolani, Aula Poeti Str. Maggiore, 45 - Bologna

G. CIBINETTO (INFN FERRARA) on behalf of the CGEM-IT group

Outline of the talk

- * The BESIII experiment and its upgrade program
- * The Cylindrical GEM Inner Tracker (CGEM-IT)
- * Simulation studies and expected performance
- Status of the project
- * Summary and outlook

THE BESIII EXPERIMENT AND ITS UPGRADE PROGRAM

The BESIII experiment @ BEPCII

- $E_{CM} = 2 4.95 \ GeV$
- $\mathscr{L}_{peak} = 1.0 \times 10^{33} \ cm^{-2} s^{-1}$
- Center-of-mass energy spanning the τ -charm sector
- Region below 2 GeV directly accessible (via ISR)
- World's largest sample of
 - $J/\psi \rightarrow 10$ billions
 - $\psi(2S) \longrightarrow 3$ billions
 - ψ(3770) −> 20 fb⁻¹
- About 22 fb⁻¹ of data for Exotic Charmonium Spectroscopy

Barrel TOF $\sigma_T = 90 \ ps$

Endcap TOF $\sigma_T = 70 \ ps$

The BESIII experiment @ BEPCII

- $E_{CM} = 2 4.95 \ GeV$
- $\mathscr{L}_{peak} = 1.0 \times 10^{33} \ cm^{-2} s^{-1}$
- Center-of-mass energy spanning the τ -charm sector
- Region below 2 GeV directly accessible (via ISR)
- World's largest sample of
 - $J/\psi \rightarrow 10$ billions
 - $\psi(2S) \rightarrow 3$ billions
 - ψ(3770) −> 20 fb⁻¹
- About 22 fb⁻¹ of data for Exotic Charmonium Spectroscopy

 $R = \sigma(e^+e^- \rightarrow hadrons)/\sigma(e^+e^- \rightarrow \mu^+\mu^-)$

5

The BESIII upgrade program: physics

- * Upgrade of the C.M. energy to 4.95 GeV, then up tp 5.6 GeV
- * Measurements of the cross sections near threshold to provide insight of the vacuum productions of $c\overline{c}$ and $s\overline{s}$ pairs
- * Study the EM structure of charmed baryons
- * Studies of the absolute BFs of Σ_c and Ξ_c

0 000	D	÷,	
tnew	scar	•	
al Ball		4	
1		_	
+			
1			
7.0			

* $e^+e^- \rightarrow \Sigma_c \overline{\Lambda}_c^- \pi$ $* e^+e^- \rightarrow \Sigma_c \overline{\Sigma}_c$ * $e^+e^- \to \Lambda_c^+ \overline{\Lambda_c^-}$ and $e^+e^- \to \Xi_c \overline{\Xi_c^-}$

Competitive with BELLE2

more at arXiv:1912.05983v3

The BESIII upgrade program: machine

* BEPCII upgrade aims at increasing luminosity by a factor of 3 & increasing beam energy to 2.8 GeV

Key technologies: double beam power & optics upgrade & new high gradient of magnets

The BESIII upgrade program: detector

- MDC performs tracking, momentum and dE/dx measurement for charged particle identification
- Inner and Outer MDC are two separate chambers sharing the same gas volume

The increasing of the luminosity is speeding up the aging of the Inner Tracker

NIM A Volume 1063, June 2024, 169276

The Cylindrical GEM Inner Tracker

- * 3 layers of cylindrical triple-GEM detectors to replace the inner MDC
- Improve rate capability, aging and secondary vertex reconstruction
- * While retaining the current momentum and tracking performance ($\sigma_p/p \sim 0.5\%$ @ 1 GeV)
- Main System Requirements
 - * Angular coverage: 93%
 - * Low material budget (~0.5% of X_0 per layer ->1.5% of X_0 in total)

9

* High azimuthal spatial resolution $-> 130-150 \mu m$ with charge and time readout

Substantial improvements in rad hard and secondary vertex reconstruction (~300 μ m in z)

Space and time resolutions defined by optimization of the mechanical design, electronics and operating parameters more at https://www.mdpi.com/2073-8994/14/5/905

Electronics design

- * 64 channels, up to 60 kHz/ch rates
- * ENC noise below 2000 e⁻ rms for strip capacitance < 100pF Max. strip C ~300 pF</p>
- * Analog charge measurement up to 50 fC
- * Possibility to extend the dynamic range with Time-over-Threshold
- * T and Q branch of every channel
- * 12 mW/ch power
- * SEU tolerant digital part

more at JINST 16 P08065

Tested also on microRWELL

CGEM-IT system implementation

SIMULATION STUDIES AND EXPECTED PERFORMANCE

Track finding

- * Global method with Hough Transform
- * The procedure includes two steps:
 - * Circle finding
 - * V-view hits association

* A global fitting with Least-Square method is done after each step

X-view hits: DC axial wire hits and CGEM X-clusters V-view hits : DC stereo wire hits and CGEM V-clusters

Expected performance

Particle gun with different multiplicities

- * CGEM XY resolutions slightly worse at low pt
- * CGEM Z resolution much better
- * Momentum resolution worse only at very low pt

Tracking efficiency with CGEM

Impact on vertex reconstruction

- * Expected impact on vertex reconstruction
- * Better separation for complex topologies and improvements on secondary vertexes, both crucial for charmed baryon decays

- So track finding with a local approach should be also efficient for tracks from displaced vertex
- A Track Following (TF) method by selecting adjacent DC hits is implemented

* To keep high efficiency for tracks from displaced vertex the assumption (or constraint) of tracks from origin should not be used

* Track finding with a local method usually use some local constraints to get track seeds (or segments) and then to associate more hits (or combine segments) to get complete track candidates.

K_S sample generated with p=0~2 GeV/c and all decay to $\pi^+\pi^-$

STATUS OF THE PROJECT

Detector staging

- * Standalone commissioning with cosmics before installation
- Continuous running for operations and performance * evaluation

Noise distributions

Detector operations

Detector currents

Charge per strip distribution

layer l

layer 2

22

Performance evaluation with cosmics

23

Alignment and residuals

- Provides geometry corrections (rotation, offset, ...)
- Method: track fitting with these corrections as global parameters, which are obtained iteratively using the tool Millepede
- 5 global parameters for each of the outer layers (relative to the inner layer)

Detector performance

- * Double-view efficiency above 95% for all layers
- * HV segmentation clearly visible in the ϕ view
- * Residual distributions for almost orthogonal tracks $< 200 \ \mu m$ including contribution from tracking

25

26

eed in Garfield++

> --> parameterized model based on ation results

Ira	nsfer2	Region	GEM foil 1	GEM foil 2
	10.9	+		
	0.174	τ (%)	80.9	61.4
	0.169 58.33	G ₀	20.0 ST 19 D05027 and	21.0

Digitization tuning with cosmic data

- * Data from cosmic runs
 - * 2D cluster reconstruction with c.c. method
 - * Straight line fit
- * Simulation with GEANT4 and CGEM-IT simulation package
- * Consistency between data and MC is good after tuning
- * Paper published: JINST 18 P05027

more at JINST 18 P05027

DETECTOR CABLING COMPLETED ON OCTOBER 18 - DETECTOR POWERED ON AT NOMINAL VALUES ON OCTOBER 19

Integration and commissioning

- Installation of the EM shielding in progress * Next to do

 - Installation of the beam pipe
 - * Installation of the final focus
- * First data acquired in standalone for debugging purpose
- * The integration with BESIII DAQ and Slow Control is in progress

* The endcaps of the EM calorimeter will be placed to their nominal position

Summary and outlook

- and higher CM energy
- secondary vertex reconstruction
- spectrometer
- about to begin

* BESIII is planning to continue taking data up to (at least) 2030 with higher luminosity

* The Cylindrical GEM Inner Tracker has been designed to improve rate capability and

* The detector has just been installed and is currently being integrated with the BESII

* Still quite some time before having some collider data to analyze but the fun part is

THANKS FOR YOUR ATTENTION

TO BE FILLED WITH DATA

Energy	Physics motivations	Current data	Expected final data	<i>T</i> _C / <i>T</i> _U
1.8 - 2.0 GeV	R values Nucleon cross-sections	N/A	0.1 fb^{-1} (fine scan)	60/50 days
2.0 - 3.1 GeV	R values Cross-sections	Fine scan (20 energy points)	Complete scan (additional points)	250/180 days
J/ψ peak	Light hadron & Glueball J/ψ decays	3.2 fb^{-1} (10 billion)	3.2 fb^{-1} (10 billion)	N/A
ψ (3686) peak	Light hadron & Glueball Charmonium decays	0.67 fb^{-1} (0.45 billion)	4.5 fb^{-1} (3.0 billion)	150/90 days
ψ(3770) peak	D^0/D^{\pm} decays	2.9 fb^{-1}	20.0 fb^{-1}	610/360 days
3.8 - 4.6 GeV	R values XYZ/Open charm	Fine scan (105 energy points)	No requirement	N/A
4.180 GeV	D_s decay XYZ /Open charm	3.2 fb^{-1}	6 fb^{-1}	140/50 days
4.0 - 4.6 GeV	XYZ/Open charm Higher charmonia cross-sections	16.0 fb ⁻¹ at different \sqrt{s}	30 fb ⁻¹ at different \sqrt{s}	770/310 days
4.6 - 4.9 GeV	Charmed baryon/XYZ cross-sections	0.56 fb ⁻¹ at 4.6 GeV	15 fb ⁻¹ at different \sqrt{s}	1490/600 days
4.74 GeV	$\Sigma_c^+ \bar{\Lambda}_c^-$ cross-section	N/A	1.0 fb^{-1}	100/40 days
4.91 GeV	$\Sigma_c \overline{\Sigma}_c$ cross-section	N/A	1.0 fb^{-1}	120/50 days
4.95 GeV	Ξ_c decays	N/A	1.0 fb^{-1}	130/50 days

	KLOE-2	BESIII	action
Number of detector layers	4	3	→ 5 mm drift gap
Drift gap	3 mm	5 mm	for mTPC
Material budget per layer	$0.5\% X_0$	$0.5\% X_0$	
Momentum resolution @1 GeV	not used	$\sigma_{pt}/P_t = ~0.5\%$	
Rate capability	< 10 kHz/cm ²	few 10 kHz/cm ²	
Spatial resolution f	250-350 mm (B=0.5T)	100-150 mm (B=1T)	mTPC
Spatial resolution Z	~1 mm	<500 m m	mTPC
Magnetic filed	B = 0.52 T	B = 1 T	mTPC
Internal/external diameter	244/440 mm	156/356 mm	higher rate
Readout	digital	charge + time	TIGER chip

R&D and detector design

more at JINST 14 P08018

- Combining CC and microTPC stable spatial resolution over a large range of incident angle
- Possibility to perform 3D track reconstruction with only one layer
- * A large (5 mm) drift gap is needed for the microTPC readout

Performance evaluation with cosmics

