WIFAI 2024

Workshop Italiano sulla Fisica ad Alta intensità

Bologna 12-15 Novembre 2024 Palazzo Hercolani, Aula Poeti Str. Maggiore, 45 - Bologna

ന്ന നാ നാ

Spectroscopy of new heavy baryons

Paolo Gandini

INFN - Sezione di Milano

13th November 2024

Outline

- I will concentrate on the spectroscopy of new heavy baryons
- A detailed description of hundreds of analyses is of course beyond the scope of this talk
- The idea is to describe the journey so far, what we learned, and what we can do in the future
- Different approaches to the analyses and how the analysis techniques improved

• Shopping list

- General Introduction on heavy baryons
- Timeline of spectroscopy studies \rightarrow example
- Types of analysis
- Double heavy baryons
- $\Xi_b \pi \pi$ states \rightarrow most recent observations

Spoiler Alert The talk will be full of images generated with AI

The LHCb detector

You've seen this detector before...

Ingredients for good spectroscopy measurements

- **Excellent tracking** \rightarrow mass and lifetime resolutions
- **Particle Identification** \rightarrow important when dealing with charged hadrons in final states
- **Trigger efficiency** \rightarrow use of muons & topological trigger give excellent efficiency

LHCb Detector Performance Int. J. Mod. Phys. A 30 (2015) 1530022

Baryon Multiplets - Status of the art

- Multiplets: Still a lot of expected states not observed experimentally, yet
- I will concentrate on conventional hadrons, but we can have extra states
- Also beyond so-called "conventional hadrons" we have so-called exotic states

Image taken from PDG Review of Particle Physics

Figure 15.5: $SU(4)_f$ multiplets of ground state baryons made of u, d, s, and c quarks. (a) The spin $\frac{1}{2}$ 20-plet extends the charmless $SU(3)_f$ octet to C = 1, 2; (b) the spin $\frac{3}{2}$ 20-plet extends the $SU(3)_f$ decuplet to C = 1, 2, 3.

Scientists discovering new particles in 2023

This is what happens when you ask to a modern AI

Images generated by DALL-E artificial intelligence And using Midjourney More oniric... less inclusive

Scientists discovering new particles in 2024

I asked baryons at CERN \rightarrow now detectors included

New observations at LHC

- Spectroscopy is a super-active field at LHC and all the experiments are contributing!
- So far 75 hadrons have been discovered at the LHC, of which 64 by LHCb

LHCb collaboration, P. Koppenburg, List of hadrons observed at the LHC, <u>LHCb-FIGURE-2021-001</u>, 2021, and <u>2024 updates</u>.

New observations at LHC

- Spectroscopy is a super-active field at LHC and all the experiments are contributing!
- So far 72 hadrons have been discovered at the LHC, of which 64 by LHCb
- The list is growing... All sector represented

LHCb collaboration, P. Koppenburg, List of hadrons observed at the LHC, <u>LHCb-FIGURE-2021-001</u>, 2021, and <u>2024 updates</u>.

WIFAI2024 - 13th November 2024

Names & Decays

- Baryons have probably a less known nomenclature
- Decay patterns depend on mass and spin properties

- Ground states + Orbital excitations
- Ground states usually decay weakly
- Excitations usually decay strongly to ground states
- Ladder of expected excitations

Paolo Gandini

Most ground states are known But not all yet!

PHYSICAL REVIEW D 98, 031502(R) (2018)

FIG. 2. The obtained masses for the bottom-strange baryons. The red solid lines (left) correspond to the predicted masses of Ξ_b states which are composed of a good diquark and a bottom quark, while the blue solid lines (right) correspond to the Ξ'_b states which contain a bad diquark. Here, we also listed the measured masses of the ground states [1] and the $\Xi_b (6227)^-$ [9], which are marked by "filled circle".

Observation of five new narrow Ω^{0}_{c} states $\rightarrow \Xi_{c}^{+}K^{-}$

• Example with the Ω and its heavier counterparts \rightarrow surprises even in "conventional" baryon spectroscopy

Doubly heavy Ecc⁺

- 2017 • Not only strong decays \rightarrow first observation of double-heavy baryons
 - Start of a new field of spectroscopy \rightarrow double heavy spectroscopy is now a fact in LHCb

 Ξ_{cc}^+

-cc

 Γ_1

 Γ_3

- Well established in 2 different modes (as required by PDG)
- Lifetime measured as well

Ingredients for a successful analysis An example...

- High yields + Clean samples
- Good momentum resolution (for m_o and $\Gamma)$
- Good ideas and guestimations
- Example on how things evolve with data becoming available

Di-Muon vs Topological triggers

- First job is to gather high yields to access rare states
- Also, S/B ratio is important, especially for the most intricate analyses
- As an example we can consider the Λ_b baryon. Standard candle for many b-baryon analyses
- Also a clean control sample for many different tasks (calibration/BF measurements)
- Use Λ_b to show Pros and Cons of Di-Muon vs Fully hadronic triggers

Most abundant b-baryon

Paolo Gandini

Extending the Q value regions

- Again.. as an example one can look for resonances above threshold \rightarrow Strong decays
- Rich system of resonances!
- Actually interesting to show the time evolution of observation

Observations vs Data available

- Again.. as an example one can look for resonances above threshold \rightarrow Strong decays
- Rich system of resonances!
- Actually interesting to show the time evolution of observation

Missing Ground States: example Σ_b^o

(buu, bdd, bud)

- Some states still eluding experimental observation
- + E.g. neutral Σ_b states are likely to decay strongly in $\Lambda_b\pi^o$
- Experimentally challenging to reconstruct prompt π^{o}
- One could look at charged case and guesstimate
- Combinatorial of photons too severe...

First observed by CDF Searches then extended by LHCb

Phys. Rev. Lett. 122, 012001 (2019)

Resolution studies

- Essential to have good resolution to extract the physical parameters of resonances
- Experimental resolution should be ideally << natural width
- Convolve BW with resolution function
- Resolution is now well understood, checked with simulation and data-driven strategies
- Dependence wrt Qvalue = $m(\Lambda_b \pi \pi) m(\Lambda_b) 2m(\pi)$

Observation of new baryons in $\Xi_b^-\pi^+\pi^-$ and $\Xi_b^0\pi^+\pi^-$

Phys. Rev. Lett. 131, 171901

New baryons in $\Xi_b{}^-\pi{}^+\pi{}^-$ and $\Xi_b{}^0\pi{}^+\pi{}^-$

b

L=0

 (J_{sq}, J^P)

 $(0, (\frac{1}{2})^+), (1, (\frac{1}{2})^+) \text{ and } (1, (\frac{3}{2})^+)$

 $\Xi_{b}^{(-,0)}, \, \Xi_{b}^{'(0,-)} \text{ and } \Xi_{b}^{*(0,-)}$

S

- At LHCb, we look both for charged and neutral states $\Xi_b^-\pi^+\pi^-$ and $\Xi_b^0\pi^+\pi^-$
- Ξ_b baryons form an isospin doublet (*bsu, bsd*)
- The ground states have L=o between *b* and lighter *sq* diquark
- Three isospin doublets of such non-excited states are expected
- Different spin parity J^P and J_{sq}
- One state still unobserved $\Xi_b'^o$
- Experimentally challenging:
 - Its mass may be below the $\Xi_{b}^{-}\pi^{+}$
 - Thus it is expected $\rightarrow \Xi_b{}^o\pi{}^o$, $\Xi_b{}^o\gamma$
- A number of excited states of higher mass is expected

From PDG live

- The idea is to use different final states
- Look for single bachelor and three bachelor final states
- More experimentally challenging (more tracks, more background) but we can get easily a 50% more signal

- Reconstruct nice samples of Ξ_b charged and neutral
- Selection based on BDT algorithms trained on simulation for signal and DATA sidebands for background
- Additional vetoes to suppress contributions from Λ_b , where required

Intermediate resonance

New baryons in $\Xi_b{}^-\pi{}^+\pi{}^-$ and $\Xi_b{}^0\pi{}^+\pi{}^-$

- We fit Q value (mass differences) \rightarrow resolution effects cancel out
- Resolution curves obtained from simulation, but validated with extensive cross-checks on data
- Fit models: Signal + Background + Reflections (where needed)

• Experimental situation quite interesting: 4 states expected but only 3 observed

- Studied all possible ways in which new peaks could appear in the intermediate spectra
- E.g if a neutral particle is lost $[\Xi_b \circ \pi \circ]$
- Studies on simulation and DATA to identify so-called reflections

- Additional components are added in the fit to the $\Xi_b^0\pi^-$ spectrum to describe partially reconstructed candidates coming from higher-mass resonances
- The reflections of the newly observed states in $\Xi_b \pi \pi$ (reflecting into the $\Xi_b \pi$ spectrum) are studied with simulation + data cross-checks
- The means of the reflection components are free parameters in the fits to data and their fitted values are consistent with expectations
- The fit also confirms the presence of partially reconstructed $\Xi_b^-(6100) \rightarrow \Xi_b^{*0}(\Xi_b^0\pi^0)\pi^-$
- Hints of a possible contribution from the decay chains $\Xi_b^-(1P, 1/2) \rightarrow \Xi_b^{\prime 0}(\Xi_b^0 \pi^0) \pi^-$

MC studies of reflection: different M₁ and M₂

- Analysis is statistically limited
- Investigated several sources of systematics
- Numerical results below

In summary:

- Observation of two new *bsq* baryons is reported: Ξ_b(6100)-
- One state is confirmed (and measured): $\Xi_b(6087)^\circ \Xi_b(6095)^\circ$
- Best measurement on the known Ξ_b ' and Ξ_b^* states
- This measurement uses final states with up to 9 tracks (record in LHCb
- Possible thanks to the excellent performance of the LHCb tracking, PID and trigger systems
- First observation of $\Xi_b^{o} \rightarrow \Xi_c^+ \pi \pi \pi$
- Seems like resonances go predominantly via their intermediate resonances
- Situation similar in the charm sector (but threshold there are different and so e.m. decays)

A naive interpretation would be that the new states are *P*-wave states (l = 1 between b and qs diquark) coupling to the *b* quark $(s = \frac{1}{2})$ to give a pair of states $J^P = (\frac{1}{2})^-$ and $(\frac{3}{2})^-$, respectively. One might expect the dominant decay mode of the lighter one to be $\Xi_b^{\prime(0,-)}\pi$ and for the heavier one $\Xi_b^{*(0,-)}\pi$. The lighter $\Xi_b^-(1P, 1/2)$ state is not observed as it would likely decay primarily through the intermediate $\Xi_b^{\prime 0}$ resonance which is below threshold to decay to $\Xi_b^-\pi^+$. However, hints of such $\Xi_b^-(6100) \to \Xi_b^{\prime 0}(\Xi_b^0\pi^0)\pi^-$ decay could be observed in the $\Xi_b^0\pi^-$ spectrum as a partially reconstructed feed-down component.

Conclusions

- LHC has proven to be a wonderful playground for heavy flavour physics!
- I tried to highlight the milestones and experimental challenges
- Bright future ahead as more data will be available with the upgraded detector!
- Higher statistics \rightarrow Access to states with lower production rates

