

Istituto Nazionale di Fisica Nucleare SEZIONE DI TORINO

Heavy meson review

WIFAI 2024 November 13th 2024 Umberto Tamponi *tamponi@to.infn.it* INFN – Sezione di Torino

Heavy or light hadrons?

Why heavy hadrons

With heavy quarks separating conventional and exotics is much simpler

Quarkonium at experiments: new generation

 ~ 2010 – now: VERY high-statistics, high quality data

The zoo

Challenging models

Compact tetraquarks Prog. Part. Nucl. Phys. 116 (2021) 103835

Meson-meson molecules

Guo et al, Rev. Mod. Phys. 90, 015004 (2018)

Born-Oppenheimer EFT (BOEFT)

arXiv:2408.04719

Comparing two radiative decays of X(3872)

A pathological example

What's to be done

Production

Prompt production of exotica

Naive idea:

 Molecules are weakly bound, they should constantly melt and re-form in dense environment

[Neidig, et al, PLB 827, 136891 (2022)]

(more or less) recent ideas to explore:

- Prompt production of exotica (4q/molecule) [EPJ C81, 669 (2021)]
- Photo-production of pentaquarks [PRD 101, 074010 (2020)]
- 4q in HI peripheral collisions [PRD 104, 114029 (2021)]

Prompt production of exotica

Naive idea:

 Molecules are weakly bound, they should constantly melt and re-form in dense environment

[Neidig, et al, PLB 827, 136891 (2022)]

Striking (?) differences in the production of compact or loose states [EPJ C81, 669 (2021)] [arXiv:2302.03828]

Naive idea:

 Molecules are weakly bound, they should constantly melt and re-form in dense environment

[Neidig, et al, PLB 827, 136891 (2022)]

(more or less) recent ideas to explore:

- Prompt production of exotica (4q/molecule) [EPJ C81, 669 (2021)]
- Photo-production of pentaquarks [PRD 101, 074010 (2020)]
- 4q in HI peripheral collisions [PRD 104, 114029 (2021)]

Other ideas: prompt production in bottomonium

Existing measurements: $Y(1S) \rightarrow exotica$

Heavy Exotica

- \rightarrow Searched in Y(1S)
- \rightarrow None observed, not even X(3872)

Patterns seen with charm should repeat with b-quark

- \rightarrow Smaller relativistic corrections
- \rightarrow Stronger selection rules (Heavy quark spin symmetry...)
- \rightarrow Only 2 (3?) exotica known there!

Experimentally challenging

 \rightarrow Only prompt production at LHC

 $\rightarrow \text{but } \sigma_{_{\text{prompt}}}[\text{pp} \rightarrow \text{Y(1S)}] \sim 0.0003 \times \sigma_{_{\text{prompt}}}[\text{pp} \rightarrow \text{J}/\psi]$

 \rightarrow Can produce Y(nS) 1- states at e^+e^-

 \rightarrow Strongly depend on the the BF for the Y(nS) to your state

 \rightarrow Ecm @ Belle II limited to ${\sim}11$ GeV (threshold for T $_{_{bb}} \sim$ 19-20 GeV) $_{_{17}}$

Patterns seen with charm should repeat with b-quark

 \rightarrow Smaller relativistic corrections

 \rightarrow Only 2 (37)

 \rightarrow Only prom

 \rightarrow but σ

Experimentally ch

 \rightarrow Stronger selection rules (Heavy quark spin symmetry...)

B-hadrons are much less known than their charmed counterparts

ψ

 \rightarrow Can produce Y(nS) 1⁻⁻ states at e⁺e⁻

- \rightarrow Strongly depend on the the BF for the Y(nS) to your state
- ightarrow Ecm @ Belle II limited to ~11 GeV (threshold for T_{bb} ~ 19-20 GeV) 18

Theory VS experiment: $e^+e^- \rightarrow Y(nS) \pi^+\pi^-$

Theory VS experiment: $e^+e^- \rightarrow Y(nS) \pi^+\pi^-$

Theory VS experiment: $e^+e^- \rightarrow \chi_{b1,2}(1P) \omega$

23

Theory VS experiment: $e^+e^- \rightarrow \eta_b(1S) \omega$

[arxiv:2312.13043]

Bottomonium: alternative approaches

Exotic stats contribute to the transitions from narrow quarkonia? \rightarrow new (?) approach to heavy spectroscopy

Theory troubles: η transitions updated

No solid prediction on simple transitions like single η

 \rightarrow Exotic contributions?

Theory troubles: η transitions updated

INFN

The heavy hadrons gave us solid experimental evidences of exotic states

- \rightarrow bb, cc, and cc 4-quark states
- \rightarrow More states than what we can understand

New discoveries in charmonium are not everything:

- \rightarrow Search for exotica in multiple production mechanisms
- \rightarrow Systematic study of production in high-multiplicity environments
- \rightarrow Prompt production in bottomonium decays
- \rightarrow Look for exotica hidden in the transitions (for bottomonium!)
- \rightarrow Measure J^{PC} of all states!

Backup

Mapping properties: absolute BFs

Mapping properties: absolute BFs

When we observe a new state ${\sf S}$ we access

$$\mathsf{Rate} = \sigma_{\mathsf{production}}(\mathsf{S}) imes \mathsf{BF}(\mathsf{S} o \mathsf{final state})$$

Workaround: measure inclusive production BF from B mesons

- $\mathsf{B}^{\scriptscriptstyle +} \to \,\mathsf{K}^{\scriptscriptstyle +}\;\mathsf{X}$
- X not reconstructed. Use K^+ recoil
- Measure production BF

Next generation b-factories: use this method as much as possible

The first charmed-strange tetraquark

 $pp \rightarrow J/\psi \ J/\psi \ + X$

[Sci. Bull. 65 1983 (2020)]

- Two structures in M(J/ ψ J/ ψ)
 - Narrow X(6900)
 - Broad enhancement @ threshold

70+ theoretical interpretations

'cc

 Ω_{cc}

 ∇

2021: First hints of Ω_{cc}^{+} and Ξ_{cc}^{+} [Sci. China-Phys. Mech. Astron. 64, 101062 (2021)] [arXiv:2109.07292]

The T_{cc}

Prompt production of something decaying into $(DD^*)^+$

[arXiv:2109:01038 and arXiv:2109:01056]

 $\mathsf{J}^{\scriptscriptstyle\mathsf{PC}}=1^+$ (probably)

Nothing in the D^+D^+ channel

J^{PC} analysis: the pentaquark example

Experiments

- Cannot neglect the resolution
- Fit computationally very demanding

Future challenges: hadrons with beauty

Exotic search with Ecm < 12 GeV are challenging

 \rightarrow rely on rare, soft EM transitions

[Ali et. Al., Prog. Part. Nucl. Phys. 97 (2017) 123-198]

		charmonium-like		bottomonium-like	
Label	J^{PC}	State	Mass [MeV]	State	Mass [MeV]
X_0	0^{++}		3756		10562
X'_0	0^{++}		4024		10652
X_1	1^{++}	X(3872)	3890		10607
Z	1+-	$Z_{c}^{+}(3900)$	3890	$Z_b^{+,0}(10610)$	10607
Z'	1^{+-}	$Z_{c}^{+}(4020)$	4024	$Z_b^+(10650)$	10652
X_2	2^{++}		4024		10652
Y_1	1	Y(4008)	4024	$Y_b(10890)$	10891
Y_2	1	Y(4260)	4263	$\Upsilon(11020)$	10987
Y_3	1	Y(4290) (or $Y(4220)$)	4292		10981
Y_4	1	Y(4630)	4607		11135
Y_5	1		6472		13036

Is there an X(3872) counterpart?

Why no X_b ?

The X(3872) may generated by a peculiar coincidence

No $\chi_{_{b}}$ is near the BB* threshold, no $X_{_{b}}$

D*

D⁺

D*0

 $\sqrt{2\mu_{DD}}BE \ge 8 \text{ fm}$

D

Statistics in bottomonium is still too limited. Need to set a stronger UL to rule out the X_b tetraquark hypothesis