Rare decays at Future Colliders

Aidan Wiederhold On behalf of the FCC Phys. & Exp. & Dets Flavour group

University of Manchester, United Kingdom

WIFAI 2024, **Bologna**, Italy 14th November 2024

Future high intensity machines?

- FCC-ee (CEPC) is highly efficient at low COM
 - **High intensity** at the Z^0 -pole
- Muon colliders increase efficiency with energy
 - High intensity at the energy frontier
- *pp* colliders (**FCC-hh**) simpler for **high** intensity and energy frontier, tricky for missing energy final states
- Linear colliders are excellent for costeffective energy frontier/Higgs factory but not the best option for high intensity
- Physics potential has plenty "back of the envelope" values available

Aidan Wiederhold

Integrated luminosity/energy as a function of COM energy [Federico Meloni / arxiv:2007.15684]

The FCC-ee

- 91 km circumference
- 4 collision points
- 16 years operation
- 4-running periods; Z^0 -pole, W^+W^- , Z^0H , $t\bar{t}$
- Most interest for rare decays is at the Z^0 -pole
- Can upgrade to FCC-hh

The FCC-ee

- Z^0 -pole run will deliver $6 \times 10^{12} Z^0$ s in total
 - "LEP in a minute"
 - $\mathcal{O}(10^{12})$ beauty hadrons produced
 - About 10 × Belle II
 [arxiv:1808.10567]
 - LHCb UII expects $\mathcal{O}(10^{14})$ [LHCB-TDR-023]
- Fills a niche between LHCb and Belle II
- We must determine what kind of detectors we need

Aidan Wiederhold

Attribute	$\Upsilon(4S)$	pp
All hadron species		\checkmark
High boost		\checkmark
Enormous production cross-section		\checkmark
Negligible trigger losses	\checkmark	
Low backgrounds	\checkmark	
Initial energy constraint	\checkmark	

Advantageous properties of Belle II ($\Upsilon(4S)$), LHC (*pp*) and FCC-ee (Z^0) [arxiv:2106.01259]

The IDEA detector

- One of the candidates for a future detector design
- Plenty development activity over the past few years
 - See talks at the FCC weeks and ECFA meetings
- Need to marry this work by detector experts with the physics requirements

$B^0 \to K^{*0} \tau^+ \tau^-$

- $b \to s \tau^+ \tau^-$ yet to be observed $\mathcal{O}(10^{-7})$ BF
 - Not expected at Belle II, expect limit $\mathcal{O}(10^{-5}) \mathcal{O}(10^{-4})$
 - Current limit from BABAR $O(10^{-4}) O(10^{-3})$ [arxiv:1605.09637]
- Many NP models expect NP to couple primarily to the Higgs and the third generation <u>Ben Stefanek: 2nd ECFA Workshop</u> 2023
- Focus on the the 3-prong $\tau^+ \to \pi^+ \pi^- \pi^+ \bar{\nu}$ decay
- Use energy-momentum conservation to resolve ν kinematics
- BDT trained with candidate kinematics to reduce backgrounds
- Signal yield extracted with an unbinned ML fit to the candidate B mass

[Tristan Miralles, Stephane Monteil]

 B^0 candidate invariant mass fit to rescaled signal and background MC

Vertex detector performance

- Emulate improved IP resolution
 - Significantly improves potential
- 30% improved single hit resolution $\implies > 3\sigma$
- Material budget found to be main limitation
- Very challenging

$B^0 \to K^{*0} \tau^+ \tau^-$

- Current FCC-ee and IDEA would not allow for discovery of this mode
- Clearly some work to do!
 - Better vertexing?
 - Easier said than done
 - Higher luminosity/longer run period?
 - Difficult/competition with other runs
 - Consider other τ decays?

• Trying to play with detector performance - can get beyond 3 and even 5σ

• Leptonics harder to handle but would produce $\mathcal{O}(10)$ times the data

$\rightarrow s \nu \bar{\nu}$ motivation

- Impossible at LHCb
- Yet to be observed, besides evidence for $B^+ \to K^+ \nu \bar{\nu}$
 - 2.7*σ* tension with SM [arxiv:2311.14647]
- Theoretically cleaner than the corresponding $b \rightarrow sl^+l^-$
 - No long-distance charm loops!
 - Very nice for spotting BSM effects
 - Again 3rd generation leptons
- Plenty of theory interest, e.g $R_Y^{l/\nu} = \frac{\mathscr{B}(B \to Yl^+l^-)}{\mathscr{B}(B \to Y\nu\bar{\nu})} [arxiv:2309.11353]$
- Novel probes of CPV from new physics [arxiv:2208.10880]

Decay	B -factories	FCC-ee
$B^+ \to K^+ \nu \overline{\nu}$	~	~
$B^+ \to K^{*+} \nu \overline{\nu}$	\checkmark	~
$B^0 \to K^0_{\rm S} \nu \overline{\nu}$	\checkmark	~
$B^0 \to K^{*0} \nu \overline{\nu}$	\checkmark	~
$B_s^0 \to \phi \nu \overline{\nu}$	×	~
$\Lambda_b^0 \to \Lambda^{(*)0} \nu \overline{\nu}$	×	~

B decays accessible by B-factories and FCC-ee

Aidan Wiederhold

Plot of the maximum likelihood fit for $B^+ \to K^+ \nu \bar{\nu}$ from inclusive tagging

Analysis setup

- Simulated datasets of the signal mode and inclusive background samples
 - Signal modes: $B^0 \to K^{*0} \nu \bar{\nu}, B^0_s \to \phi \nu \bar{\nu}, B^0 \to K^0_s \nu \bar{\nu}, \Lambda^0_h \to \Lambda^0 \nu \bar{\nu}$
 - *bb*, $c\bar{c}$ and $q\bar{q}$ with $q \in \{u, d, s\}$
- Decay topology split into high- and low-energy hemispheres

• Defined by thrust axis
$$T = \sum_{p} \frac{|p \cdot \hat{n}|}{|p|}$$

Build *s* particle candidates from their expected final state based on vertex/track properties

[arxiv:2309.11353]

Sketch of a $B^0 \to K^* \nu \bar{\nu}$ event

Analysis setup

- "Simple" analysis
- 2-stage BDT selection: Hemisphere properties followed by candidate properties
- Use bi-cubic splines to build efficiency maps of BDT cuts

•
$$S(\epsilon_{\mathsf{BDTs}}^s) = 2N_Z \mathscr{B}(Z \to b\bar{b}) f_B \mathscr{B}(B \to Y\nu)$$

- $B(\epsilon_{\mathsf{BDTs}}^x) = \sum_{x \in \{b\bar{b}, c\bar{c}, q\bar{q}\}} 2N_Z \mathscr{B}(Z \to x) \epsilon_{\mathsf{pre}}^x \epsilon_{\mathsf{BDTs}}^x$
- Optimise $S/\sqrt{S+B}$ as a function of $\epsilon_{\text{BDTs}}^{s}$, $\epsilon_{\text{BDTs}}^{x}$ in the efficiency maps

[arxiv:2309.11353]

$b \rightarrow s \nu \bar{\nu} BF$ sensitivity

- Belle II expects $\mathcal{O}(10\%)$ uncertainty on $\mathscr{B}(B \to K^{(*)} \nu \bar{\nu})$ with 50 ab⁻¹
 - Exciting potential with $B^+ \to K^+ \nu \bar{\nu}$
- FCC-ee assuming perfect vertex seeding and PID:
 - $\mathcal{O}(1\%)$ uncertainty for $B^0 \to K^{*0} \nu \bar{\nu} \& B^0_{c} \to \phi \nu \bar{\nu}$
 - $\mathcal{O}(3\%)$ uncertainty for $B^0 \to K^0_{\rm S} \nu \bar{\nu}$
 - $\mathcal{O}(10\%)$ uncertainty for $\Lambda_h^0 \to \Lambda^0 \nu \bar{\nu}$
- CEPC study for $B_s^0 \rightarrow \phi \nu \bar{\nu}$ [arxiv:2201.07374]

Aidan Wiederhold

[arxiv:2309.11353]

Sensitivity estimate as a function of BF for $B^0 \to K^{*0} \nu \bar{\nu}$ (top) & $B^0_s \to \phi \nu \bar{\nu}$ (bottom)

$b \rightarrow s \nu \bar{\nu}$ detector requirements

- Robust against πK mis-ID with at least $\sim 2\sigma$ separation
- Require ≤ 0.2 mm vertex resolution
 - Well above the expected resolution $\mathcal{O}(10\mu\mathrm{m})$
- More detailed studies in the future to evaluate the full detector requirements

- All are yet to be observed
 - Assuming $m_{\nu} = 0$ helicity suppression $\Longrightarrow \mathscr{B}(B^0_{(s)} \to \nu \bar{\nu}) = 0$
 - With $m_{\nu} > 0$ suppressed $\propto (m_{\nu}/m_R)^2 O(10^{-25})$
 - $\mathscr{B}(B^0_{(s)} \to \nu \bar{\nu} \nu \bar{\nu}) \mathscr{O}(10^{-15}) [arxiv:1809.04606]$

•
$$\mathscr{B}(B^0_{(s)} \to \nu \bar{\nu} \nu \bar{\nu} \gamma) - \mathscr{O}(10^{-9}) [\underline{arxiv:9604378}]$$

- Belle II expect sensitivity down to 10^{-6} for B^0 and 10^{-5} for B_s^0
- γ mode potentially in reach of a Tera-Z facility with SM conditions
- Otherwise observation => unambiguous new physics

[PÁ Cartelle, M Kenzie, R Mangrulkar, ARW, E Wood]

Simplest Feynman diagrams for $B^0_s \to \nu \bar{\nu}$

- Study is WIP just B_{c}^{0} for now
- Analysis setup like $b \rightarrow s \nu \bar{\nu}$
- No s candidate to build
 - Signal hemisphere \implies hardest h from hadronisation: low p, from PV
 - Other \implies hardest h from a decay: high p, displaced vertex

[PÁ Cartelle, M Kenzie, R Mangrulkar, ARW, E Wood]

University of Manchester

e

adronisation partne

- Clearly needs more work to squeeze down below 10^{-5}
- Highly dependent on efficiency of background rejection
 - Considering exclusive MC samples

Dependence of significance on BF: with perfect background expectation (blue) and including the error on the *S*, *B* expectations (orange)

Not an exhaustive list

- Ratio of $B_{(s)}^0 \to \mu^+ \mu^-$, powerful test of minimal flavour violation
- $b \rightarrow s\mu^+\mu^-$ beyond the HL-LHC high- p_T searches (FCC-hh/ μ) [arxiv:2205.13552]

•
$$b \rightarrow s\gamma, b \rightarrow se^+e^-$$

- Other flavour rare decays
- $H/t\bar{t}$ runs
 - arxiv:1202.5704]
 - $t \rightarrow Hc, Hu$
- Muon colliders
 - $\mu^+\mu^- \rightarrow b\bar{s} + sb$ complementary probes to $b \rightarrow s\mu^+\mu^-$

Aidan Wiederhold

• Flavour violation - $H \rightarrow bs$, $cu \& H \rightarrow \tau \mu$, τe (similar for Z^0) [arxiv:1209.1397,

Summary

- FCC-ee can fill the niche between LHCb and Belle II
 - Rely on building from previous knowledge e.g. SuperKEKB luminosity struggles
- Never before observed processes will be possible
 - $B^0_s \to \phi \nu \bar{\nu}, \Lambda^0_h \to \Lambda^0 \nu \bar{\nu}$
 - $b \rightarrow s \tau^+ \tau^-$
 - Potential for differential measurements, novel CPV searches etc...
- Existing limits and branching fractions will be improved upon
- Future work
 - Consider $B^+ \to K^+ \nu \bar{\nu}$ and $B_c^+ \to D^+ \nu \bar{\nu}$
 - Detailed detector requirement studies
- Muon colliders can provide complementary high intensity experiments

Thanks for listening

- Inspiration from
 - Matt Kenzie <u>ECFA-UK</u>
 - Yasmine Amhis <u>QCD@LHC 2024</u>
 - Jure Zupan <u>Inaugural US Muon Collider Meeting</u>

