WIFAI 2024

Evolution of trigger and TDAQ system for rare decay searches at LHCb

Giulia Tuci, on behalf of the LHCb collaboration Heidelberg University

Bologna, 14/11/2024

Introduction

- LHCb: broad physics program
 - CPV & CKM, hadronic spectroscopy,
 rare decays, lepton universality tests,
 electroweak physics, dark sector,
 heavy ions, fixed target...
- At √s = 13 TeV
 - Charm production rate: ~1 MHz
 - Beauty production rate: ~ 45 kHz
 - ➤ In Run 3, we can store offline 10Gb/s
 - \rightarrow ~50 kHz
- Need a flexible trigger!

Evolution of trigger and DAQ at LHCb

LHCb-TDR-016

L0 hardware trigger (Muon and Calorimeter

information), followed by two-stage software trigger

LHCb 2012 Trigger Diagram

40 MHz bunch crossing rate

(Turbo model)

- Similar trigger strategy in Run 2
- Ability to use trigger output for analysis and discard raw detector information in trigger

 - Fundamental for the collection of the large
 - charm dataset used for first observation of CPV

LHCb-FIGURE-2020-016

Trigger bandwidth $[MBs^{-1}] \propto$ Trigger rate $[kHz] \times$ Average event size [kB]

Giulia Tuci, 14/11/2024

LHCb in Run 3

- LHCb Run 1 and Run 2: huge success!
- The majority of measurements is statistically limited
 - \rightarrow LHCb Upgrade I: 5x instantaneous luminosity
- Improve physics performance, despite the more challenging environment
 - Completely new tracking and trigger system

- Higher instantaneous luminosity
 - > Tight p_{T} and E_{T} cuts saturate hadronic channels \rightarrow L0 trigger removed
 - Software trigger process events at the full LHC collision rate
 - \rightarrow room for improving trigger efficiency w.r.t. Run 2

- Full detector readout @ LHC crossing rate
- Two-stage software trigger (HLT1 on GPUs, HLT2 on CPUs)
- 10 GB/s of data for offline processing

HLT1 in Run 3

- GPU choice matches LHCb
 DAQ architecture
 - > GPUs hosted by Event

Builder Nodes

 \rightarrow reduce data at earlier

stage

 \rightarrow smaller and simpler

network

More flexibility in designing selections

- Software trigger → flexibility in design selections
 - \succ K_s⁰ candidates reconstructed directly at the first level of the trigger!
 - > Dedicated selections to collect single K_s^0 and pairs of $K_s^0 \rightarrow$ increase

efficiency in selecting decays like $D^0 \rightarrow K_S^0 K_S^0$

LHCb-FIGURE-2024-008 LHCb-FIGURE-2024-013

Impact on trigger efficiencies

Recover soft muons: particularly relevant for strange, charm and tau physics

Impact on trigger efficiencies (2)

Electron modes: large efficiency increase and better kinematic overlap with

the muon samples

LHCb-FIGURE-2024-030

A word on rare kaon decays

- Search for $K_s^0 \rightarrow \mu^+ \mu^-$ and $K_s^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ done using full Run 1+ Run 2 dataset
 - No signal observed <u>PRL 125, 231801 (2020)</u> <u>PRD 108 (2023) L031102</u>
 - Only long tracks used in the analysis
 - > No downstream tracking at HLT1 in Run 1 and Run 2 \rightarrow low trigger efficiency

Downstream tracking at HLT1

- Downstream tracking included in the HLT1 reconstruction in the last
 ~two weeks of 2024 pp data-taking!
- Room for improving efficiency in many channels, including:
 rare kaon decays, LLP, radiative decays with converted photons

LHCb-FIGURE-2024-035

Looking ahead: LHCb Upgrade II

- FTDR approved in 2022 and <u>Scoping Document</u> submitted to LHCC
- Instantaneous luminosity will increase by a factor 7.5
 - Large data volumes, more complex events
 - ➤ Larger B/W to the trigger
 - More computing power needed
- 200 TB/s of data, to be processed in real time and reduced by ~4 orders of magnitude before sending to permanent storage
- 4D reconstruction: timing added to tracking and ECAL detectors to better isolate signals
- R&D activities to explore other heterogeneous architectures

Real-time tracking on FPGAs

- Idea: reconstruct tracks even before event-building on FPGAs (see <u>F.Terzuoli's talk</u>)
- Run 4: reconstruct tracks downstream of the

magnet <u>LHCb-PUB-2024-001</u>

- It will also open the possibility to drop some raw
 data at readout level →save bandwidth
- VELO clustering on FPGAs (default in Run 3) allows to drop raw pixel data and save ~14% of DAQ bandwidth

Conclusions

- Thanks to its flexible trigger, LHCb giving major contributions in rare decays of beauty, charm and strange hadrons
- Detector and trigger fully upgraded before start of Run 3 data-taking
- About 9.5fb⁻¹ of data taken in 2024 are now being analysed
- LHCb Upgrade II is becoming a reality
 - > More challenges (but also

opportunities) ahead

Backup slides

LHCb in Run 3

Data-taking

*** 2022**

- > all detectors installed but UT
- local commissioning of subdetectors
- global commissioning of trigger, alignment and calibration
- VELO routinely closed in the last couple of months

2023

- LHC vacuum incident in the VELO in Jan: operated with VELO gap of 49 mm
- UT completed installation
- collected data during ion run

Data-taking (2)

*** 2024**

- ➢ VELO RF-box replaced
- UT included in global data-taking

after June TS

Selfie of the new RF-box and VELO modules with reconstructed hadronic interaction vertices

