

Status and prospects of rare decay searches at LHCb

Gabriele Martelli Istituto Nazionale di Fisica Nucleare - Sezione di Perugia On behalf of the LHCb collaboration

Bologna, 12-15 November 2024 WIFAI 2024: Workshop Italiano sulla Fisica ad Alta Intensità

Why search for rare decays?

LHCD THCD

Flavour Changing Neutral Currents (FCNC)

- Forbidden at **tree level** in the SM
- Allowed only at **loop level**
- New Physics (NP) contributions may enter in loops

Why search for rare decays?

Flavour Changing Neutral Currents (FCNC)

- Forbidden at **tree level** in the SM
- Allowed only at **loop level**
- New Physics (NP) contributions may enter in loops

Look for deviations from SM predictions

Why search for rare decays?

Flavour Changing Neutral Currents (FCNC)

- Forbidden at tree level in the SM
- Allowed only at **loop level**
- New Physics (NP) contributions may enter in loops

Look for deviations from SM predictions

- Exstensive programme at *LHCb*
 - Search for (very) rare or forbidden modes
 - Branching Fractions (B) measurements
 - Amplitude and angular analyses
 - **CP** violation
 - Null tests in the SM

https://lbfence.cern.ch/alcm/public/analysis

Today's talk – New results

Rare charm and strange decays

- "Search for the rare decay of charmed baryon Λ_c^+ into the $p\mu^+\mu^-$ final state" [PRD 110 (2024) 5, 052007]
- "Observation of the $\Sigma^+ \rightarrow p \mu^+ \mu^-$ rare decay at LHCb" [LHCb-CONF-2024-002]

[arXiv:2405.13103]

LFV – "Search for the lepton-flavor violating decay $B_s^0 \rightarrow \phi \mu^{\pm} \tau^{\mp}$ "

[LHCb-PAPER-2024-046] – Paper in preparation

• LFU - "Test of lepton flavour universality with $B_s \rightarrow \phi_{(\rightarrow K^+K^-)}\ell^+\ell^-$ decays" [arXiv:2410.13748]

"Test of lepton flavour universality with $B^+ \rightarrow K^+ \pi^- \ell^+ \ell^-$ decays"

[JHEP 09 (2024) 026]

Amplitude measurements in *B* decays

> Null tests in *B* decays: LFU and LFV

- "Amplitude analysis of the radiative decay $B_s^0 \rightarrow K^+ K^- \gamma$ " [JHEP 08 (2024) 093]
- "Comprehensive analysis of local and non local amplitudes in the $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decay"

•

Amplitude measurements in B decays

Studying $b \rightarrow s\ell^+\ell^-$ transitions

► Effective Field Theory (EFT)

• Short distance physics parametrised via effective couplings

Wilson Coefficients C_i

- Perturbative, short distance physics
- Describes heavy SM+NP effects

Operators \mathcal{O}_i

- Non-perturbative, long distance physics
- Strong interactions, difficult to calculate

Studying $b \rightarrow s\ell^+\ell^-$ transitions

► Effective Field Theory (EFT)

• Short distance physics parametrised via effective couplings

Wilson Coefficients C_i

- Perturbative, short distance physics
- Describes heavy SM+NP effects

Operators \mathcal{O}_i

- Non-perturbative, long distance physics
- Strong interactions, difficult to calculate

• RD mostly sensitive to $C_7^{(\prime)}$, $C_9^{(\prime)}$ and $C_{10}^{(\prime)}$

Operator \mathcal{O}_i	$B_{s(d)} \rightarrow V_{s(d)} \mu^+ \mu^-$	$B_{s(d)} \rightarrow \mu^+ \mu^-$	$B_{s(d)} \rightarrow V_{s(d)}\gamma$
\mathcal{O}_7 EM	\checkmark		\checkmark
\mathcal{O}_9 Vector dilepton	\checkmark		
\mathcal{O}_{10} Axial-vector dilepton	\checkmark	\checkmark	
$\mathcal{O}_{S,P}$ (Pseudo-)Scalar dilepton	(\checkmark)	\checkmark	

Amplitude analysis of $B_s^0 \rightarrow K^+ K^- \gamma$

- "Amplitude analysis of the radiative decay $B_s^0 \to K^+ K^- \gamma$ "
 - $\sqrt{s} = 7, 8, 13 \text{ TeV}, \mathcal{L} = 9.0 \text{ fb}^{-1}$
 - [JHEP 08 (2024) 093]
- ► Nice features
 - Free of the S-wave amplitude
 - Interferences of odd- and even-spin resonances cancel out
 - Detector asymmetries cancelled out by folding over θ_{KK} $\cos \theta_{KK} \rightarrow |\cos \theta_{KK}|$

Amplitude analysis of $B_s^0 \rightarrow K^+ K^- \gamma$

Candidates / (50 MeV/c²)

- "Amplitude analysis of the radiative decay $B_s^0 \to K^+ K^- \gamma$ "
 - $\sqrt{s} = 7, 8, 13 \text{ TeV}, \mathcal{L} = 9.0 \text{ fb}^{-1}$
 - [JHEP 08 (2024) 093]
- ► Nice features
 - Free of the S-wave amplitude
 - Interferences of odd- and even-spin resonances cancel out
 - Detector asymmetries cancelled out by folding over θ_{KK} $\cos \theta_{KK} \rightarrow |\cos \theta_{KK}|$
- ► Amplitude fit

$$\mathcal{P}_{S}(m_{KK}, \theta_{KK}) = \varepsilon(m_{KK}, \theta_{KK}) \cdot \left| \sum_{R} c_{R} \cdot \mathcal{F}_{R} \mathcal{F}_{B} \mathcal{B} \mathcal{W}_{R}(m_{KK}; \mu_{R}, \Gamma_{R}) \right|$$

$$PDF \qquad \text{Acceptance} \qquad \text{Isobar } KK \text{ model}$$

- 20 free parametersYields, isobar factors, phases
- $\phi(1020), f'_2(1525)$ mass and width
- $\phi(1020)$ radius

Results on $B_s^0 \to K^+ K^- \gamma$

\blacktriangleright Fit fractions, relative \mathcal{B} and overall tensor contribution reported for the preferred fit solution

State	Fit fraction [%]	Relative fit fraction [%]	Phase [deg.]	
φ(1020)	$70.3^{+0.9}_{-1.0}{}^{+1.0}_{-1.2}$	100	0 (fixed)	$\mathcal{F}_{\{f_2\}} = 16.8 \pm 0.5 (\text{stat}) \pm 0.7 (\text{syst})\%,$
$f_2(1270)$	$0.8 \pm 0.3^{+0.2}_{-0.3}$	$1.2^{+0.4}_{-0.3}{}^{+0.3}_{-0.5}$	$-55^{+13}_{-17}^{+25}_{-17}$	$\mathcal{O}(D^0 \to f!(1525)z)$
$f_2'(1525)$	$12.1^{+0.6}_{-0.5}{}^{+0.9}_{-0.4}$	$17.3^{+0.8}_{-0.7}{}^{+1.3}_{-0.5}$	0 (fixed)	$\frac{\mathcal{B}(B_s^0 \to f_2(1323)\gamma)}{\mathcal{B}(B_s^0 \to \phi(1020)\gamma)} = 0.194^{+0.009}_{-0.008} \text{ (stat.)}^{+0.014}_{-0.005} \text{ (syst.)} \pm 0.005 \text{ (B)}$
$\phi(1680)$	$3.8^{+0.6}_{-0.5}\pm0.7$	$5.4^{+0.9}_{-0.6}{}^{+1.0}_{-1.1}$	$137^{+5}_{-6} \pm 8$	$\mathcal{B}(B^0 \longrightarrow f_2(1270)\chi)$
$\phi_3(1850)$	$0.3^{+0.2}_{-0.1}{}^{+0.2}_{-0.1}$	$0.4^{+0.3}_{-0.2}^{+0.3}_{-0.2}$	$-61^{+16}_{-13}^{+16}_{-13}$	$\frac{\mathcal{B}(B_s \to f_2(1270)\gamma)}{\mathcal{B}(B_s^0 \to \phi(1020)\gamma)} = 0.25^{+0.09}_{-0.07} \text{ (stat.)}^{+0.06}_{-0.10} \text{ (syst.)} \pm 0.03 \text{ (}\mathcal{B}\text{)},$
$f_2(2010)$	$0.4{\pm}0.2^{+0.2}_{-0.1}$	$0.6^{+0.3}_{-0.2}^{+0.3}_{-0.2}$	$43^{+30}_{-24}{}^{+52}_{-59}$	$\mathcal{B}(B^0 \to \phi(1680)\gamma)$
$(KK)_{NR}$	$0.5^{+0.4}_{-0.2}$	$0.6^{+0.5}_{-0.3}$	$165^{+6}_{-16} \pm 9$	$\frac{\mathcal{Z}(-s) \to \phi(1020)\gamma}{\mathcal{B}(B_s^0 \to \phi(1020)\gamma)} \times \mathcal{B}(\phi(1680) \to K^+K^-) = 0.026^{+0.004}_{-0.003} \text{ (stat.)} \pm 0.005 \text{ (syst.)}.$

► Conclusions

- First amplitude analysis of the dikaon resonant structure in $B_s^0 \to K^+ K^- \gamma$ decay
 - ✓ $m_{KK} = 2400 \text{ MeV}/c^2$
- First observation of the radiative $B_s^0 \rightarrow f_2'(1525)\gamma$ decay

Amplitude analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Full q^2 spectrum parametrised

Wilson coefficients

Form factors

- "Comprehensive analysis of local and non local amplitudes in the $B_0 \rightarrow K^{*0} \mu^+ \mu^-$ decay"
 - $\sqrt{s} = 7, 8, 13 \text{ TeV}, \mathcal{L} = 8.4 \text{ fb}^{-1}$
 - [JHEP 09 (2024) 026]
- > Non-local effects described as corrections to C_9

Amplitude fit to $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

- Unbinned maximum likelihood fit to the four-dimensional distribution
 - $\cos \theta_{\ell}, \cos \theta_k, \phi \text{ and } q^2$

Results from the amplitude fit

Null tests in B decays LFU and LFV

Lepton Flavour Universality

- ► $b \rightarrow s\ell^+\ell^-$ transitions happen only via **loop** or **boxes**
 - $\mathcal{B} \sim 10^{-7} 10^{-6}$
 - Used to test the Lepton Flavour Universality (LFU) in the SM
 - Non-LFU physics mediators may contribute in the amplitudes

Lepton Flavour Universality

► $b \rightarrow s\ell^+\ell^-$ transitions happen only via **loop** or **boxes**

- $\mathcal{B} \sim 10^{-7} 10^{-6}$
- Used to test the Lepton Flavour Universality (LFU) in the SM
- Non-LFU physics mediators may contribute in the amplitudes
- ► LFU test by measuring relative rates
 - Hadronic uncertainties cancels out
 - Predicted with very high precision by the SM

$$R_{X} = \frac{\int_{q_{min}^{2}}^{q_{max}^{2}} \frac{\mathcal{B}(B \to X\mu^{+}\mu^{-})}{dq^{2}} dq^{2}}{\int_{q_{min}^{2}}^{q_{max}^{2}} \frac{\mathcal{B}(B \to X\mu^{+}\mu^{-})}{dq^{2}} dq^{2}} \underset{I}{\underset{q_{min}^{2}}{\overset{g_{max}}}{\overset{g_{max}}{\overset{g_{max}}}{\overset{g_{max}}}{\overset{g_{max}}}{\overset{g_{max}}}{\overset{g_{max}}}{\overset{g_{max}}}{\overset{g_{max}}}{\overset{g_{max}}}{\overset{g_{max}}}{\overset{g_{max}}}{\overset{g_{max}}}{\overset{g_{max}}}{\overset{g_{max}}}{\overset{g_{max}}}{\overset{g_{max}}}}{\overset{g_{ma$$

Neutral Current

LFU at LHCb

[PRD 108 (2023) 032002]

- *LHCb* dominates the precision of LFU tests
 Investigated different hadronic systems
 - $X = K, K^*, pK \dots$
- ► Latest results

Istituto Nazionale di Fisica Nucleare Sezione di Perugia

- LFU test with $B_s \to \phi_{(\to K^+K^-)} \ell^+ \ell^-$ decays
 - ✓ First LFU test with a B_s decay
 - ✓ First *LHCb* high- q^2 LFU test
 - ✓ First observation of $B_s \to \phi e^+ e^-$ decay
- LFU test with $B^+ \to K^+ \pi^+ \pi^- \ell^+ \ell^-$ decays
 - ✓ First inclusive LFU test with 5-body decays
 - ✓ First observation of $B^+ \to K^+ \pi^+ \pi^- e^+ e^-$

Experimental strategy

Resonant channels used for checks/data driven studies

 $r_{J/\psi} = \frac{\mathcal{B}(B \to XJ/\psi(\to \mu^+ \mu^-))}{\mathcal{B}(B \to XJ/\psi(\to e^+ e^-))} \equiv 1 \to \text{Sensitive to } e, \mu \text{ differences}$ $R_{\psi(2S)} = \frac{\mathcal{B}(B \to X\psi(2S)(\to \mu^+ \mu^-))}{\mathcal{B}(B \to XJ/\psi(\to \mu^+ \mu^-))} \cdot \frac{\mathcal{B}(B \to XJ/\psi(\to e^+ e^-))}{\mathcal{B}(B \to X\psi(2S)(\to e^+ e^-))} \equiv 1 \to \text{Efficiency related systematics cancel in double ratio}$

 $R_{\phi}(X = \phi)$

- ► "Test of lepton flavour universality with $B_s \rightarrow \phi_{(\rightarrow K^+K^-)} \ell^+ \ell^-$ decays"
 - $\sqrt{s} = 7, 8, 13 \text{ TeV}, \mathcal{L} = 9.0 \text{ fb}^{-1}$
 - [arXiv:2410.13748]
- ► Analysis
 - Measurement performed in three q^2 regions
 - ✓ Low- q^2 0.1 < q^2 < 1.1 GeV²/ c^4
 - ✓ Central- q^2 1.1 < q^2 < 6.0 GeV²/ c^4
 - ✓ High- q^2 15.0 < q^2 < 19.0 GeV²/ c^4
 - Narrow ϕ resonance and excellent $m(K^+K^-)$ resolution at *LHCb*

Results on R_{ϕ}

► Measurements in agreement with SM predictions

$q^2 \; [{ m GeV}^2\!/c^4]$	R_{ϕ}^{-1}
$\begin{array}{c} 0.1 < q^2 < 1.1 \\ 1.1 < q^2 < 6.0 \\ 15.0 < q^2 < 19.0 \end{array}$	$\begin{array}{c} 1.57 {}^{+0.28}_{-0.25} \pm 0.05 \\ 0.91 {}^{+0.20}_{-0.19} \pm 0.05 \\ 0.85 {}^{+0.24} \pm 0.10 \end{array}$

- Dominated by statistical uncertainty
- Main systematics Signal and background modelling shapes

Results on R_{ϕ}

► Measurements in agreement with SM predictions

$q^2 \; [{ m GeV}^2\!/c^4]$	R_{ϕ}^{-1}
$0.1 < q^2 < 1.1$	$1.57^{+0.28}_{-0.25}\pm 0.05$
$1.1 < q^2 < 6.0$	$0.91^{+0.20}_{-0.19} \pm 0.05$
$15.0 < q^2 < 19.0$	$0.85^{+0.24}_{-0.23}\pm0.10$

- Dominated by statistical uncertainty
- Main systematics Signal and background modelling shapes

►
$$\mathcal{B}(B_s \to \phi e^+ e^-)$$
 agrees with measured $\mathcal{B}(B_s \to \phi \mu^+ \mu^-)$

$q^2 \; [{ m GeV}^2 / c^4]$	$d\mathcal{B}(B_s^0 \to \phi e^+ e^-)/dq^2 \ [10^{-7} \text{GeV}^{-2}c^4]$
$0.1 < q^2 < 1.1$	$1.38 {}^{+0.25}_{-0.22} \ \pm 0.04 \pm 0.19 \pm 0.06$
$1.1 < q^2 < 6.0$	$0.26 \pm 0.06 \pm 0.01 \pm 0.01 \pm 0.01$
$15.0 < q^2 < 19.0$	$0.39 \pm 0.11 \pm 0.04 \pm 0.02 \pm 0.02$

- $\sqrt{s} = 7, 8, 13 \text{ TeV}, \mathcal{L} = 9.0 \text{ fb}^{-1}$
- [LHCb-PAPER-2024-046] paper in preparation
- ► Analysis
 - Measurement performed in one q^2 region
 - ✓ Central- q^2 1.1 < q^2 < 7.0 GeV²/ c^4
 - Decay simulated with PS model

 $\overset{\times}{lpha}_{1.6}$

1.4

1.2

1.0

0.8

0.6

0.4

0.0

LHCb

- $\sqrt{s} = 7, 8, 13 \text{ TeV}, \mathcal{L} = 9.0 \text{ fb}^{-1}$
- [LHCb-PAPER-2024-046] paper in preparation
- ► Analysis
 - Measurement performed in one q^2 region
 - ✓ Central- q^2 1.1 < q^2 < 7.0 GeV²/ c^4
 - Decay simulated with PS model
- Measurement in agreement with SM predictions

 $R_{K\pi\pi}^{-1} = 1.31^{+0.18}_{-0.17} (\text{stat})^{+0.12}_{-0.09} (\text{syst})$

Main systematics Background modelling Reweighting of the simulated phase-space

2.5

Lepton Flavour Violation

> b → sℓ⁺ℓ⁻ transitions to look for Lepton Flavour Violation (LFV) decays • Related to possible LFUV

- Way to constrain NP models
- ► $B^0 \to K^{*0} \mu^{\pm} e^{\mp}$ and $B_s^0 \to \phi \mu^{\pm} e^{\mp}$ decays at *LHCb*
 - No signicant signals observed
 - ✓ Best limits set so far at 90% (95%) CL
 - ✓ Most stringent limits on a semileptonic LFV *b*-hadron decays

$$\begin{split} \mathcal{B}(B^{0} \to K^{*0} \mu^{+} e^{-}) &< 5.7 \times 10^{-9} \ (6.9 \times 10^{-9}), \\ \mathcal{B}(B^{0} \to K^{*0} \mu^{-} e^{+}) &< 6.8 \times 10^{-9} \ (7.9 \times 10^{-9}), \\ \mathcal{B}(B^{0} \to K^{*0} \mu^{\pm} e^{\mp}) &< 10.1 \times 10^{-9} \ (11.7 \times 10^{-9}), \\ \mathcal{B}(B^{0}_{s} \to \phi \mu^{\pm} e^{\mp}) &< 16.0 \times 10^{-9} \ (19.8 \times 10^{-9}) \end{split}$$

World first limit

٠

•

Istituto Nazionale di Fisica Nucleare Sezione di Perugia

Rare charm and strange decays

Search for $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$ decays

- ► $c \rightarrow u\mu\mu$ transition
 - Non-resonant short-distance $(\mathcal{B} \sim 10^{-8})$
 - ϕ, ρ, η, ω intermediate resonances
- "Search for the rare decay of charmed baryon Λ_c^+ into the $p\mu^+\mu^-$ final state"
 - $\sqrt{s} = 13 \text{ TeV}$, $\mathcal{L} = 5.4 \text{ fb}^{-1}$
 - [PRD 110 (2024) 5, 052007]
- ► Analysis
 - Study in both resonant and non-resonant dimuon regions
 - Normalised to ϕ region $\Lambda_c^+ \to p\phi(\to \mu^+\mu^-)$

Λ_c^+ resonant decays

► Three distinct results

Istituto Nazionale di Fisica Nucleare Sezione di Perugia

Branching fractions measurements

• No attempt to disentangle the resonant components to account for interference effects

$$\begin{aligned} \mathcal{B}(\Lambda_c^+ \to p\omega) &= (9.82 \pm 1.23 \text{ (stat.)} \pm 0.73 \text{ (syst.)} \pm 2.79 \text{ (ext.)}) \times 10^{-4}, \\ \mathcal{B}(\Lambda_c^+ \to p\rho) &= (1.52 \pm 0.34 \text{ (stat.)} \pm 0.14 \text{ (syst.)} \pm 0.24 \text{ (ext.)}) \times 10^{-3}, \\ \mathcal{B}(\Lambda_c^+ \to p\eta) &= (1.67 \pm 0.69 \text{ (stat.)} \pm 0.23 \text{ (syst.)} \pm 0.34 \text{ (ext.)}) \times 10^{-3}, \end{aligned}$$

Λ_c^+ non-resonant decays

> No evidence for $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$ decays in the **non-resonant** regions

▶ New upper limit using $\mathcal{B}(\Lambda_c^+ \to p\phi)$ and $\mathcal{B}(\phi \to \mu^+\mu^-)$ from the <u>PDG</u>

$${\cal B}(\Lambda_c^+ o p \mu^+ \mu^-) < 2.9~(3.2) imes 10^{-8} ~~{
m at}~~90\%~(95\%)~{
m CL}.$$

- ► s→ $d\mu\mu$ transition
 - Short distance SM $\mathcal{B} \sim \mathcal{O}(10^{-12})$
 - Dominated by long distance contributions from Σ⁺ → (Nπ)⁺ decays 1.6 × 10⁻⁸ < B(Σ⁺ → pμ⁺μ⁻) < 9.1 × 10⁻⁸ [Phys. Rev. D72 (2005) 074003] [JHEP 1810 (2018) 040]

- ► First evidence from the *HyperCP* experiment
 - Three candidates observed in absence of background
 - Measured branching fraction: $\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) = (8.6^{+6.6}_{-5.4} \pm 5.5) \times 10^{-8}$ [Phys. Rev. Lett. 94 (2005) 021801]
- ► The Anomaly
 - Same dimuon invariant mass for the observed candidates
 - Possible $\Sigma^+ \to pX^0 (\to \mu^+ \mu^-)$ decay $m_{X^0} = 214.3 \pm 0.5 \text{ MeV}$ $\mathcal{B}(\Sigma^+ \to pX^0 (\to \mu^+ \mu^-)) = (3.1^{+2.4}_{-1.9} \pm 1.5) \times 10^{-8}$

1200

1300

1400

 $m_{
ho\mu^+\mu^-}$ [MeV/ c^2]

- Candidates / (5 MeV/ c^2) 8 7 6 5 $\Sigma^+ \rightarrow p \mu^+ \mu^-$ LHCb *"Evidence for the rare decay* $\Sigma^+ \rightarrow p\mu^+\mu^-$ *"* Data Full model **4.1***σ* Run 1 dataset • $-\cdot \Sigma^+ \rightarrow \rho \mu^+ \mu^ \sqrt{s} = 7,8 \text{ TeV}, \ \mathcal{L} = 3.0 \text{ fb}^{-1}$ ----- Background [Phys. Rev. Lett. 120 (2018) 221803] **Stronger** evidence by *LHCb* Excess of signal candidates w.r.t. background •
 - $N_{\Sigma^+ \to p \mu^+ \mu^-} = \left(10.2^{+3.9}_{-3.5}\right)$

Istituto Nazionale di Fisica Nucleare Sezione di Perugia

- Measured branching fraction: • $\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) = (2.2^{+0.9+1.5}_{-0.8-1.1}) \times 10^{-8}$
- Consistent with SM prediction ٠

Istituto Nazionale di Fisica Nucleare

New analysis with Run 2

- $\sqrt{s} = 13$ TeV, $\mathcal{L} = 5.4$ fb⁻¹
- [LHCb-CONF-2024-002]
- ► What's new?
 - Increase in statistics
 - ✓ Factor \sim 4 larger w.r.t. previous analysis
 - ✓ Larger MC samples
 - Increase in performances
 - \checkmark Run 1 \rightarrow Highly prescaled minimum bias data
 - $\checkmark \quad \text{Run } 2 \rightarrow \text{Dedicated trigger lines}$
 - ✓ Gain of a factor ~ 13 in signal efficiency
 - Improved PID performance on protons and muons

New analysis with Run 2

- "Observation of the $\Sigma^+ \to p\mu^+\mu^-$ rare decay at LHCb"
 - $\sqrt{s} = 13 \text{ TeV}$, $\mathcal{L} = 5.4 \text{ fb}^{-1}$
 - [LHCb-CONF-2024-002]
- ► What's new?
 - Increase in statistics
 - \checkmark Factor ~4 larger w.r.t. previous analysis
 - ✓ Larger MC samples
 - Increase in performances
 - ✓ Run 1 → Highly prescaled minimum bias data
 - $\checkmark \quad \text{Run } 2 \rightarrow \text{Dedicated trigger lines}$
 - ✓ Gain of a factor ~ 13 in signal efficiency
 - Improved PID performance on protons and muons
- ► Results
 - $N_{\Sigma^+ \to p \mu^+ \mu^-} = 279 \pm 19$
 - Rarest hyperon decay ever observed
 - Paper in preparation with integrated BF measurement

Search for HyperCP-like signals

- *sPlot* method using $m_{p\mu^+\mu^-}$ as discriminant variable
 - Event-by-event signal re-weight
- > No significant peaking structure is visible
 - Data compared with simulated phase space
 - Simulation re-weighted according to SM amplitude
 - Good agreement found in the full $m_{\mu^+\mu^-}$ distribution

Conclusions

► Rare decays at *LHCb*

- A way to investigate on (possible) NP hints
- *b*-sector, but also *c* and *s*-modes
- Major (and some world's best) contributions "from our side"

Today's talk (Run 1 + Run 2 dataset)

- Amplitude analyses
- LFU and LFV null tests
- Searches for (very) rare charm and strange decays
- What's next?
 - Run 3 is happening **right now** with LHCb Upgrade 1, however ...
 - ... rare modes measurements still expected to be statistically limited
 - Full potential in flavour physics will be exploited with Upgrade II
 - \checkmark Run 5 and beyond

YES

I WOULD LIKE MORE STATISTICS PLEASE

On behalf of the LHCb collaboration thank you for your attention

Backup slides

The LHCb Run 2 detector

