WIFAI 2024 - Bologna - 14/11/2024

David Marzocca

1

Probing New Physics with Rare Decays

Most of the **richness and complexity** of the Standard Model comes from the **Yukawa sector:** $\chi_{s\mu}^{\text{yuk}} = -y_e^{ij} \bar{L}_i^{\mu} e_j^{\mu} H - y_d^{ij} \bar{Q}_i^{\mu} d_j^{\mu} H - y_u^{ij} \bar{Q}_i^{\mu} u_j^{\mu} H + l_{\mu} c_{\mu}$

The Flavour of the Standard Model

All **lepton masses**, **proton-neutron mass difference**, the **QCD mass gap** (pion mass), **0 < me** ≪ **mp,n** , **CKM** mixing, …

Most of the **richness and complexity** of the Standard Model comes from the **Yukawa sector:** \overline{Q} 'd; $H - y_u^{ij}$ \overline{Q} ' u ; $\widetilde{H} + I_u.c.$

The Flavour of the Standard Model

$$
\mathbf{L}_{\mathbf{S}\mathbf{M}}^{\mathbf{V}\mathbf{K}} = -\mathbf{V}_{e}^{i\mathbf{S}}\mathbf{L}_{i}^{i}e_{j}^{i}H - \mathbf{Y}_{d}^{i}
$$

All **lepton masses**, **proton-neutron mass difference**, the **QCD mass gap** (pion mass), **0 < me** ≪ **mp,n** , **CKM** mixing, …

- hierarchical fermion masses

- hierarchical quark mixing matrix

 $V_{\rm CKM} \sim$

It presents a **very peculiar structure**:

Most of the **richness and complexity** of the Standard Model comes from the **Yukawa sector:** \overline{Q} 'd; $H - y_u^{ij}$ \overline{Q} ' u ; $\widetilde{H} + I_u.c.$

The Flavour of the Standard Model

$$
\chi_{s\mu}^{\nu\mu}=-y_{e}^{i\overline{j}}\overline{L}_{i}^{i}e_{j}^{i}H-y_{d}^{i\overline{j}}
$$

All **lepton masses**, **proton-neutron mass difference**, the **QCD mass gap** (pion mass), **0 < me** ≪ **mp,n** , **CKM** mixing, …

- hierarchical fermion masses

- hierarchical quark mixing matrix

 $V_{\rm CKM} \sim$

It presents a **very peculiar structure**:

However, **the theory gives no explanation** for these hierarchies. *Is there a more fundamental underlying theory which does?* **"SM Flavour Puzzle"**

We know that the Standard Model must be extended at some high energy scale Λ .

If we are interested in physics at energies **E** ≪ **Λ** we can write the low-energy Lagrangian as a series **expanded in powers of 1/Λ**: the **Standard Model Effective Field Theory**.

We know that the Standard Model must be extended at some high energy scale Λ .

If we are interested in physics at energies **E** ≪ **Λ** we can write the low-energy Lagrangian as a series **expanded in powers of 1/Λ**: the **Standard Model Effective Field Theory**. $\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{sm}}^{(d \le 4)} + \frac{C^{(5)}}{\Lambda_{\nu}} \mathcal{C}_{\text{W}} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)}[\varphi_{\text{sm}}] + \mathcal{O}(\Lambda^{-4})$

 $\left(\frac{E}{\lambda}\right)^{\alpha-q} \ll 1$

The **SM** is just the **renormalisable IR remnant of the more fundamental UV theory**.

We know that the Standard Model must be extended at some high energy scale Λ .

If we are interested in physics at energies **E** ≪ **Λ** we can write the low-energy Lagrangian as a series **expanded in powers of 1/Λ**: the **Standard Model Effective Field Theory**. $\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{sm}}^{(d \leq 4)} + \frac{C^{(5)}}{\Lambda_{\text{w}}} \mathcal{O}_{\text{w}} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)}[\varphi_{\text{sm}}] + \mathcal{O}(\Lambda^{-4})$

$$
\left(\frac{E}{\Lambda}\right)^{d-4} \ll 1
$$

suppression of FCNC and CP-violation **Lepton Flavour Universality** conservation of *B, Le, Lμ, L^τ* custodial symmetry very small neutrino masses

The **SM** is just the **renormalisable IR remnant of the more fundamental UV theory**.

The limited set of operators allowed at *d ≤* 4 automatically endows the **SM** with **accidental features & symmetries:**

The Standard Model as an EFT

The Standard Model as an EFT

We can expect large effects in rare or forbidden processes!

in general violate all the accidental symmetries and properties of the SM

The Standard Model as an EFT

We can expect large effects in rare or forbidden processes!

Precision tests of forbidden or suppressed processes in the SM **are powerful probes of physics Beyond the Standard Model. >> Flavour Physics ! <<**

The Standard Model as an EFT

There can be **different scales Λ associated to the violation of different SM properties**: quark flavour, lepton flavour, L and B violation, etc..

Remember:

Since the SM is renormalisable, we don't have a clear target (except $Λ ≤ M_{Pl}$)

the measurement)

Flavour in the SM has a rigid structure. **Measuring flavour transitions puts strong constraints on New Physics with generic flavour structure.**

Flavour in the SM has a rigid structure. **Measuring flavour transitions puts strong constraints on New Physics with generic flavour structure.**

Near-future prospects

CKM suppression of the ci(6)

Precision tests push Λ to be very high

Bounds on Λ (taking c_i ⁽⁶⁾ = 1) from various processes

Flavour in the SM has a rigid structure. **Measuring flavour transitions puts strong constraints on New Physics with generic flavour structure.**

CKM suppression of the ci(6)

Precision tests push Λ to be very high

Bounds on Λ (taking c_i ⁽⁶⁾ = 1) from various processes

If New Physics is present **at the TeV scale**, **its flavour structure should be constrained** by some "protecting" principle (symmetry or dynamics): **the BSM Flavour Problem**.

 \rightarrow the c⁽⁶⁾ coefficients should be suppressed.

$$
\sum_{i} \frac{d^{(1-\epsilon)}}{n^{2}} = \sum_{i} \frac{C_i^{(\epsilon)}}{n^2} \frac{1}{2} \int_{i}^{16} [q_{\text{S}}n] \qquad \text{Mean-fit}
$$

Let us consider the hypothetical case **Λ ~ 1 - 10 TeV**

- Solutions to the Hierarchy Problem
- Reach of present/future colliders
- Experimental anomalies
-

Let us consider the hypothetical case **Λ ~ 1 - 10 TeV**

With this low scale, **flavour-violating operators should be suppressed**, e.g. by small CKM elements.

- Solutions to the Hierarchy Problem
- Reach of present/future colliders
- Experimental anomalies

Need some Flavour Protection

Let us consider the hypothetical case **Λ ~ 1 - 10 TeV**

With this low scale, **flavour-violating operators should be suppressed**, e.g. by small CKM elements.

Typically, a good **flavour structure for a quark-current operator** $\bigodot_{n} \alpha \left(\tilde{d}_i \right)_{n} d_j$... is:

 $C_{i,j} \sim \left(\begin{array}{cc} \mathcal{E}_{1} & \lambda^{5} & \lambda^{3} \\ \lambda^{5} & \mathcal{E}_{2} & \lambda^{2} \\ \end{array}\right) \lambda \sim sin \theta_{c}$ $\left(\begin{array}{cc} \lambda^3 & \lambda^2 & 1 \end{array}\right)$

- Solutions to the Hierarchy Problem
- Reach of present/future colliders
- Experimental anomalies

Need some Flavour Protection

Let us consider the hypothetical case **Λ ~ 1 - 10 TeV**

With this low scale, **flavour-violating operators should be suppressed**, e.g. by small CKM elements.

Typically, a good flavour structure for a quark-current operator

 $C_{i,j} \sim \left(\begin{array}{cc} \mathcal{E}_{1} & \lambda^{5} & \lambda^{3} \\ \lambda^{5} & \mathcal{E}_{2} & \lambda^{2} \\ \end{array}\right) \lambda \sim sin \theta_{c}$ $\left(\begin{array}{cc} \lambda^3 & \lambda^2 & 1 \end{array}\right)$

- Solutions to the Hierarchy Problem
- Reach of present/future colliders
- Experimental anomalies

Need some Flavour Protection

$$
\bigodot_{i,j} \alpha \left(\bar{d}_i \, \delta_{\mu} \, d_j \right) \ldots
$$
 is:

$$
\mathcal{E}_{4,2}
$$
 U(2)-like:
$$
\mathcal{E}_{4,2} \ll 4
$$
 MFV-like:
$$
\mathcal{E}_{4,2} \sim 4
$$

Probing New Physics with Rare Decays

Consider a **rare low-energy process in the SM** Short-distance low-energy EFT coefficient

Probing New Physics with Rare Decays

Consider a **rare low-energy process in the SM** Short-distance low-energy EFT coefficient

Short-distance low-energy EFT coefficient

Measuring this precisely puts strong constraints on the **EFT combination c/Λ²** , **the better the smallest** λ **_{SM}** is.

For this goal it is crucial to have the **smallest possible uncertainty on the short-distance contributions**:

• Very **large statistics** to probe the rare decays with sufficient precision

-
- Good control over **backgrounds and systematics** (experimental environment and detector performance) **Exp**

- Good control over the SM prediction:
	- **SM inputs** (CKM matrix elements)
	- **QCD matrix elements** (form factors)
	-

- control over the possible **long-distance contributions**

TH

R(K^(*)) → Universality in *µ vs.* e is established at ~5% level. **Neutral-current semileptonic B decays** *b → s µ+ µ-*

R(K **Universality in** *μ vs. e* **is established at ~5% level.** ($\left(\star\right)$ **Neutral-current semileptonic B decays** *b → s µ+ µ-*

More developments needed to establish the QCD prediction. Progress ongoing. see e.g. [Gubernari et al. 2206.03797, Ciuchini et al 2212.10516, Isidori et al 2305.03076, Bordone et al. 2401.18007]

BR's & angular distr. \longrightarrow Viable universal contribution, aligned with long-distance QCD effects: C₉U

- $R_K = 1 \rightarrow$ coupling to electrons = coupling to muons
- **Z' models** now challenged by $e^+e^- \rightarrow \mu^+ \mu^- \mathbb{Q}$ **LEP-II** [see however 2306.08669, 2409.06804]
- LQ models now disfavored by $B_s \rightarrow \mu e \& \mu \rightarrow e$ LFV. More involved model building required (e.g. two LQ in SU(2)F symm.)

R(K **Universality in** *μ vs. e* **is established at ~5% level.** ($\left(\star\right)$ **Neutral-current semileptonic B decays** *b → s µ+ µ-*

More developments needed to establish the QCD prediction. Progress ongoing. see e.g. [Gubernari et al. 2206.03797, Ciuchini et al 2212.10516, Isidori et al 2305.03076, Bordone et al. 2401.18007]

Brief Overview New Physics solutions: [Greljo et al 2212.10497, Ciuchini et al 2212.10516]

BR's & angular distr. \longrightarrow Viable universal contribution, aligned with long-distance QCD effects: C₉U

- More involved model building required (e.g. two LQ in SU(2)F symm.)
- $R_K = 1 \rightarrow$ coupling to electrons = coupling to muons • **Z' models** now challenged by $e^+e^- \rightarrow \mu^+ \mu^- \mathcal{Q}$ LEP-II [see however 2306.08669, 2409.06804] • LQ models now disfavored by $B_s \rightarrow \mu e \& \mu \rightarrow e$ LFV.
-

A motivated New Physics contribution to C₉U Bobeth et al. 1109.1826, Capdevila et al. 1712.01919, Crivellin et al. 1807.02068, **And the Sidori, et al. 1903** Den Matter of al. 1903 Den Matter And 2010 Den Matter Isidor Alguerò et al. 1903.09578, Cornella et al. 2001.04470, Aebischer, Isidori, et al. 2210.13422,

> **→ Related to R(D(*)** → **Induce C₉U**

R(K **Universality in** *μ vs. e* **is established at ~5% level.** ($\left(\star\right)$ **Neutral-current semileptonic B decays** *b → s µ+ µ-*

$$
\int_{\text{O}} C_9^{\text{U}} \approx 7.5 \left(1 - \sqrt{\frac{R_{D^{(*)}}}{R_{D^{(*)}SM}}} \right) \left(1 + \frac{\log(\Lambda^2/(1 \text{TeV}^2))}{10.5} \right)
$$

More developments needed to establish the QCD prediction. Progress ongoing. see e.g. [Gubernari et al. 2206.03797, Ciuchini et al 2212.10516, Isidori et al 2305.03076, Bordone et al. 2401.18007]

Brief Overview New Physics solutions: [Greljo et al 2212.10497, Ciuchini et al 2212.10516]

BR's & angular distr. \longrightarrow Viable universal contribution, aligned with long-distance QCD effects: C₉U

Rare Semileptonic and Leptonic decays

To **which NP scale Λ** are these measurements **sensitive** to?

Take this current x current operator just as example

The
$$
\mathcal{L}_{eff} > \frac{C}{\Lambda^2} \left(\overline{q}_{L}^{i} \delta_{a} q_{L}^{j} \right) \left(\overline{\mu}_{L} \delta^{a} \mu_{L} \right)
$$

Rare Semileptonic and Leptonic decays

To **which NP scale Λ** are these measurements **sensitive** to?

Take this current x current operator just as example

In new physics scenarios with **CKM-like flavour structure**, the **strongest constraints in the quark-muon couplings come from bsμμ observables**.

 $\mathcal{L}_{\text{CFT}} > \frac{C}{\Lambda^2} \left(\overline{q}_{L}^{i} \gamma_{\alpha} q_{L}^{j} \right) \left(\overline{\mu}_{L} \gamma^{\alpha} \mu_{L} \right)$

Golden-channels of rare decays

 $s \rightarrow d \nu \overline{\nu}$ *̅*

$K^+ \to \pi^+ \nu \overline{\nu}$, $K_L \to \pi^0 \nu \overline{\nu}$ *̅*

NA62 (CERN) KOTO (JPARC)

 $b \rightarrow s \nu \overline{\nu}$ *̅*

$B \rightarrow K^* \rightarrow \nu \overline{\nu}$

BaBar, Belle, Belle II (JPARC)

Golden-channels of rare decays

Precise SM predictions possible due to absence of long-distance QCD effects: neutrinos do not couple to the electromagnetic current. see 1409.4557, 1503.02693, 2109.11032, 2301.06990, …

 $s \rightarrow d \nu \overline{\nu}$ *̅*

 $K^+ \to \pi^+ \nu \overline{\nu}$, $K_L \to \pi^0 \nu \overline{\nu}$ *̅* NA62 (CERN) KOTO (JPARC)

 $b \rightarrow s \vee \overline{\nu}$ *̅*

$B \rightarrow K^(*) \nu \overline{\nu}$

BaBar, Belle, Belle II (JPARC)

The **SM rate is suppressed** by loop and small CKM factors: **high sensitivity to New Physics**.

Main th. uncertainties due to:

- Hadronic form factors (Lattice QCD)
- CKM matrix elements

Becirevic et al. 2301.06990

Becirevic et al. 2301.06990

Belle-I₂₀₂₃: BR($B^+ \to K^+ \nu \bar{\nu}$) = (2.3 ± 0.6) × 10-5

Combination: $BR(B^+ \rightarrow K^+ \nu \bar{\nu}) = (1.3 \pm 0.4) \times 10^{-5}$

*B → K***(*)** *ν ν ̅*

$BR(B^+ \to K^+ \nu \bar{\nu})_{\rm SM} = (0.444 \pm 0.030) \times 10^{-5}$

Becirevic et al. 2301.06990

$B = \text{B} \text{B} \text{B} \text{C}$ B $\text{B} \text{C}$ B \rightarrow K* $\nu \bar{\nu}$ $> 2.7 \times 10^{-5}$ @ 90%CL

Becirevic et al. 2301.06990

Belle-I₂₀₂₃: BR($B^+ \to K^+ \nu \bar{\nu}$) = (2.3 ± 0.6) × 10-5

Combination: $BR(B^+ \rightarrow K^+ \nu \bar{\nu}) = (1.3 \pm 0.4) \times 10^{-5}$

$BR(B^0 \to K^{*0} \nu \bar{\nu})_{\rm SM} = (9.05 \pm 1.4) \times 10^{-6}$

*B → K***(*)** *ν ν ̅*

$BR(B^+ \to K^+ \nu \bar{\nu})_{\rm SM} = (0.444 \pm 0.030) \times 10^{-5}$

Becirevic et al. 2301.06990

 $B = \text{B} \text{B} \text{B} \text{C}$ B $\text{B} \text{C}$ B \rightarrow K* $\nu \bar{\nu}$ $> 2.7 \times 10^{-5}$ @ 90%CL

* Assuming SM to be the central value, also motivated by a small 2σ excess in the K*+ channel.

$$
R_{k}^{v} = \frac{\beta R(B + k v)}{B R(B + k v)} = 2,93 \pm 0,90
$$

$$
R_{k}^{v} = \frac{\beta R(B + k' v)}{B R(B + k' v)} = 4.0 \pm 1.4^{*}
$$

Becirevic et al. 2301.06990

Belle-I₂₀₂₃: BR($B^+ \to K^+ \nu \bar{\nu}$) = (2.3 ± 0.6) × 10-5

Combination: $BR(B^+ \rightarrow K^+ \nu \bar{\nu}) = (1.3 \pm 0.4) \times 10^{-5}$

 $BR(B^0 \to K^{*0} \nu \bar{\nu})_{\rm SM} = (9.05 \pm 1.4) \times 10^{-6}$

*B → K***(*)** *ν ν ̅*

$BR(B^+ \to K^+ \nu \bar{\nu})_{\rm SM} = (0.444 \pm 0.030) \times 10^{-5}$

̅

 \sum_{EFT}

They probe scales of about 5-7 TeV, with a slight excess from the SM preferring either a RH or vector-like quark current. Future Belle II results (in particular from the K^{*} mode) will help to clarify the situation.

DM, M. Nardecchia, A. Stanzione, C. Toni [2404.06533]

Assuming **only NP in tau** (see paper for other cases)

$BR(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = (8.09 \pm 0.63) \times 10^{-11}$

Allwicher et al. [2410.21444] (see also Buras et al. 1503.02693, 2109.11032, etc..)

NA62₂₀₂₄: $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (13.6 \, (\frac{+3.0}{-2.7})_{\text{stat}} (\frac{+1.3}{-1.2})_{\text{syst}}) \times 10^{-11}$

NA62 (CERN) KOTO (JPARC)

KOTO2021: $BR(K_L \to \pi^0 \nu \bar{\nu}) \leq 4.9 \times 10^{-9}$ *@* 90%CL $BR(K_L \to \pi^0 \nu \bar{\nu})_{\rm SM} = (2.58 \pm 0.30) \times 10^{-11}$ Allwicher et al. [2410.21444]

Derived by combining exclusive and inclusive determinations. [2310.20324, 2406.10074]

$BR(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = (8.09 \pm 0.63) \times 10^{-11}$

Allwicher et al. [2410.21444] (see also Buras et al. 1503.02693, 2109.11032, etc..)

NA62₂₀₂₄: $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (13.6 \, (\frac{+3.0}{-2.7})_{\text{stat}} (\frac{+1.3}{-1.2})_{\text{syst}}) \times 10^{-11}$ KOTO2021:

 $BR(K_L \to \pi^0 \nu \bar{\nu}) \leq 4.9 \times 10^{-9}$ *@* 90%CL

NA62 (CERN) KOTO (JPARC)

 $BR(K_L \to \pi^0 \nu \bar{\nu})_{\rm SM} = (2.58 \pm 0.30) \times 10^{-11}$

Allwicher et al. [2410.21444]

Neutral-current

$$
\sum_{E_{FT}} \sum_{\nu} \mathcal{L}_{L,R}^{ij\tau\tau} \left(\bar{d}_{i_{L,R}} \gamma_{\mu} d_{j_{L,R}} \right) \left(\bar{\nu}_{\tau} \gamma^{\mu} \nu_{\tau} \right)
$$

A clue for a flavor struture

-
-
- - -
	- -

The physics scales become compatible!

sbvv

sdvu

 $sdvv$

A clue for a flavor struture

sbvv

The physics scales become compatible!

The physics scales become compatible!

Conclusions

Many of the peculiar aspects of the **Standard Model** are **tested in Flavour Physics**: conservation rules, forbidden processes, suppressed rates, etc.

Rare decays provide a large number of very **powerful probes of New Physics**.

couplings is assumed. mass scale required to address R(D^(*)) anomalies.

Effective Field Theories are the natural playing ground for **new interpretation**.

The **effective scales** probed in rare decays **reach O(100) TeV**.

-
-
-
-
- This scale goes down to **~few TeV if a CKM-like flavour structure** (MFV, U(2), ..) of new physics
- Under this assumptions, the new physics scale probed in golden channel decays is compatible with the

Grazie!

Backup

In first approximation only the 3rd generation couples to the Higgs $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ over $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

In this case the theory enjoys a $U(2)$ ⁵ global symmetry $\frac{1}{2}$ $G_F = U(2)_q \times U(2)_\ell \times U(2)_u \times U(2)_d \times U(2)_e$. Barbieri et al. [1105.2296, 1203.4218, 1211.5 $3\times U(2)_u\times U(2)_d\times U(2)_e$ **Explore the 2006–1203-4218-1211 FORE**

The **minimal breaking** of this symmetry to reproduce the SM Yukawas is: $\mathbf{I}_{\mathbf{S}}$ these spurions the SM Yukawa matrices can be written as $\mathbf{I}_{\mathbf{S}}$ the written as $\mathbf{I}_{\mathbf{S}}$ I_{nonno} *fillition y* to reproduct

$$
Y_{u(d)} = y_{t(b)} \left(\begin{array}{cc} \mathbf{\Delta}_{u(d)} & x_{t(b)} \mathbf{V}_q \\ 0 & 1 \end{array} \right) ,
$$

Barbieri et al. [1105.2296, 1203.4218, 1211.5085] *u* 6, 1203.4218, 1211.5085]

the observed masses and mixing angles is ²

V^q ⇠ (2*,* 1*,* 1*,* 1*,* 1) *, V*` ⇠ (1*,* 2*,* 1*,* 1*,* 1) *,*

(5)

 $\begin{bmatrix} 1 & 3 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$

A clue for a flavor struture over the parameter space, performance in a Markov Chain Monte Carlo a Markov Chain Monte Carlo a Markov Chain Monte Carlo algorithm. 3 Scalar leptoquarks and *U*(2)⁵ flavor symmetry In the limit where only this case of this case of the SM enjoys the global state \mathcal{L}_1 where *Oi*(*x, Mx*) is the expression of the observable as function of the model parameters,

$$
Y_{u(d)} = y_{t(b)} \begin{pmatrix} \Delta_{u(d)} & x_{t(b)} \mathbf{V}_q \\ 0 & 1 \end{pmatrix}, \qquad Y_e = y_\tau \begin{pmatrix} \Delta_e & x_\tau \mathbf{V}_\ell \\ 0 & 1 \end{pmatrix}_{x_{t,b,\tau} \text{ are } \mathcal{O}(1), \ \mathbf{V}_\ell \ll 1}
$$
\nThis is a very good approximate symmetry: the largest breaking has size

\n
$$
\epsilon \approx y_t |V_{ts}| \approx 0.04
$$
\nDiagonalizing quark masses, the **V_q doublet spurion is fixed** to be **V_q** = $\kappa_q (V_{td}^*, V_{ts}^*)^T$ (see also Fuentes-Martin, Isidori, Pagès, Yamamoto [1909.02519]

In first approximation only the 3rd generation couples to the Higgs
$$
\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
$$

$$
\tilde{V}=-\varepsilon V_{ts}\begin{pmatrix}\kappa V_{td}/V_{ts}\\1\end{pmatrix}
$$

Minimal
$$
U(2)_{q}
$$
: $\kappa = 1$.

A clue for a flavor struture

$Q_{\ell q}^\pm = (\bar q_L^3 \gamma^\mu q_L^3)(\bar \ell_L^3 \gamma_\mu \ell_L^3) \pm (\bar q_L^3 \gamma^\mu \sigma^a q_L^3)(\bar \ell_L^3 \gamma_\mu \sigma^a \ell_L^3)$

Lepton Flavour Universality

$$
R(D^{(*)}) \equiv \frac{\mathcal{B}(B^0 \to D^{(*)+} \tau \nu)}{\mathcal{B}(B^0 \to D^{(*)+} \ell \nu)}, \quad R(X) = \frac{\mathcal{B}(B \to X \cdot \nu)}{\mathcal{B}(B \to X \cdot \nu)}
$$

$$
\ell = \mu, e
$$

MB^d MB^d SM MB^s $\overline{\mathbf{A}}$ $\overline{ }$ **B-anomalies in charged current** *b*→*cτν* 1 $\overline{}$ $b \rightarrow c \tau \overline{\nu}_{\tau}$ $\overline{\mathbf{f}}$ *MB^d MB^d* **DITICIII** *SM* **BR(BR(B**) \overline{c} **n Flavour Un** V_{cb} **between the contract of the c** \overline{b} <u>C</u> \blacksquare \blacksquare **Tree-level** SM process W *G^F* $\frac{d}{dx}$ /Habl $\overline{\partial}$ *L* $\partial_{\mathcal{B}}$ *c*sUpptes $\frac{F}{\lambda}$ / W th $(\overline{\delta_{\nu}}$ lag c s \cup ppression. $\mathcal{B}(B^0 \to D^{(*)+}\tau\nu)$ $\underline{\mathcal{B}}(B^0)$ H_{r}) if H_{r} $\frac{B^0 \to D^{(*)+} \tau \nu}{D^{(*)+} \rho}$, $R(X) = \frac{B (B \to X \tau \nu_\tau)^{\frac{1}{2}}}{B (B \to X \tau \nu_\tau)^{\frac{1}{2}}}$ \equiv $\mathcal{B}(B^0 \to D^{(*)+} \ell \nu)$ BR(*^B* ! *^D*(⇤) *^B*(*B*⁰ ! *^D*(⇤)+⌧⌫) $\overline{}$ SM prediction under control. P $\ell = \mu, e$ *B*(*B*⁰ ! *D*(⇤)+`⌫) $0.5 \rightarrow$ BaBar, PRL109,101802(2012)
Belle, PRD92,072014(2015) ~ 20% enhancement in LH currents $\mathcal{S}(\mathbf{D})$ $\Delta \chi^2$ = 1.0 contours LHCh, PRL115,111803(2015) SM Predictions $\mathsf{K}(\lambda)$ \mathcal{L} \overline{a} 8/2023 \mathbf{B} 1σ LHCb, FPCP2017 $IC(2015)$ ζ = 1,1>> = 0 BaBar12 $\begin{array}{ccc} \hline \text{at } 2012) \\ \hline \end{array}$ 0.4 3σ $R(D)_{\text{SH}}$ $R(\vec{D})_{\text{SH}}$ $R(\vec{X})_{\text{SH}}$ $\mathcal{S} = \{ \mathcal{S} \mid \mathcal{S} \in \mathcal{S} \mid \mathcal{S} \in \mathcal{S} \}$, for $\mathcal{S} = \{ \mathcal{S} \mid \mathcal{S} \in \mathcal{S} \}$ $\frac{4\sigma}{ }$ Belle15 cancel in the ratio (to a good extent) 0.3 2σ *HFLAV* \mathcal{N} three very different results by the very different results by the very different results by \mathcal{N} ∽d∪v∻ 0.25 *HFLAV FPCP 2017* $\left(\begin{array}{cc} \overline{a} & \overline{b} \\ \overline{c} & \overline{c} \end{array} \right)$ **BelleII** *FPCP 2017* 0.2 $\mathcal{L} = \mathbf{0}$. $\begin{array}{ccc} \begin{array}{ccc} \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} \end{array} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{5} & \mathbf{6} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{8$ **HFLAV** \mathcal{O} 0.3 0.4 0.5 \mathcal{O} 0.4 0.5 \mathcal{O} $\mathbf{r}(\mathbf{n})$ Belle19

Corresponds to a **New Physics scale** of

$$
\left(\begin{array}{c|c}\n\hline\n\text{RINM} & \text{MN} \\
\hline\n\text{CBrM} & \text{MN} \\
\hline\n\text{CBrM} & \text{MN} \\
\hline\n\end{array}\right)^{-2}
$$