Cryogenic Detectors for particle physics

Istituto Nazionale di Fisica Nucleare

INFN

Marco Vignati Sapienza University and INFN Rome 20/6/2024

Cryogenics: when sensitivity matters

Applications of cryogenic detectors

Cooling mechanism

Kelvin temperature is easily reached with Liquid He or Pulse tubes The interesting part is from K to 0.01 K: **dilution mechanism**

- ⁴He (Bose) / ³He (Fermi) mixture
- Phase separation below 0.87 K
 - Phase rich in ⁴He
 - Phase rich in ³He
- Work: pump ³He gas through the ⁴He condensate (evaporation)
- Evaporation absorbs heat
 - Cooling power

Cryolab @ Sapienza U.

Experimental volume is few to tens of litre, typically

M. Vignati

Most popular cryogenic sensors

High impedance: semiconducting f

Low impedance: superconducting TES and KIDs

Most popular cryogenic sensors

High impedance: semiconducting f

Low impedance: superconducting TES and KIDs

7

Semiconducting thermistors

Hopping conduction

הווכוצא

1 a 11

Semiconductor g Room T: 300 Doped semicond

temperature of mana measure. transition (MIT).

Mott's model:

$$R(T) = R_0 \exp\left(\frac{T_0}{T}\right)^{\gamma}$$

neutron-transmutation-doped germanium (NTD-Ge)

Thermistor readout

• The thermistor resistance depends on the temperature as:

$$R(T) = R_0 \exp\left(\frac{T_0}{T}\right)^2$$

using parameters of CUORE experiment ($R_0 = 1.15 \Omega$, $T_0 = 3.35 K$ and $\gamma = 1/2$):

R (10 mK) ~100 MΩ

 The signal is detected biasing the resistance and reading the voltage V(t) across it:

V(t) is then amplified, filtered and digitised.
 M. Vignati

example of NTD in particle physics

Bolometric technique in CUORE

- natTeO₂ crystals (low heat capacitance) source embedded in the detector
- Source ended in the set • NTD-Ge thermistor: $R(T) = R_0 \exp\left(\frac{T_0}{T}\right)^{\frac{1}{2}}$ $R(T) = 100 - 1000 \text{ k}\Omega @ 10 \text{ mK}$
- Resolution $@0\nu\beta\beta$ energy (2528 keV): $\Delta E = 5 \text{ keV FWHM}$
- ► Detection efficiency ~ 80%

Double β decay

0vββ is possible only in few natural isotopes, e.g.: ¹³⁰Te, ⁷⁶Ge, ¹³⁶Xe, ¹⁰⁰Mo, ⁸²Se.

Present half-life limits are: $\tau > 10^{25-26}$ years. Several nuclei (100 - 1000 kg) are needed.

Almost Zero background is needed.

Arrays of TeO₂ bolometers

Cryogenic Underground Observatory for Rare Events

- Hosted at Gran Sasso lab in Italy.
- 988 ^{nat}TeO₂ bolometers 19 towers, 13 floors.
- Active mass: 742 kg.
- Isotope mass: 206 kg ¹³⁰Te.
- Expected background: 10⁻² c/keV/kg/year
- Sensitivity to 0vββ in 5y T_{1/2} = 9 x 10²⁵ y @90% C.L.
- Sensitivity to m_{ββ} in 5y:
 50 130 meV @90% C.L.

CUORE detector before cool down

Most popular cryogenic sensors

Low impedance: superconducting TES and KIDs

Elements of superconductivity

Conductivity - Drude model

- J current density
- E electric field
- *n* electron density
- q electron charge
- *m* electron mass
- *τ* mean free time between collisions with phonons

Superconductivity for dummies

- Many materials at cryogenic temperatures have zero DC impedance.
- The phenomenon arises below a critical temperature, $T < T_c$.
- Below this temperature electrons do not scatter on the lattice anymore and are bound in Cooper Pairs:
 - Binding energy is small
 ~ 0.4 meV in aluminum.
 - Opposite electrons spins forming a Bose condensate
 - Single wave function over the condensate.

0	•	•	0	9	0	•	0	0
0	0	0	0	+0	+9 e	0	0	0
•	•	•		+0	+0	0	9	•
•	0	0	0	0	0	0	0	0

First electrons defoms part of the lattice electrostatically.

Second electron is attracted to the net positive charge of the deformation

List of superconductors (Wikipedia)

Substance +	Class +	<i>T</i> _C (K) ≑	<i>H</i> _C (T) \$	Type +	BCS ÷	Pb	Element	7.19	0.08	I	yes
AI	Element	1.20	0.01	I	yes	Re	Element	2.4	0.03	I	yes
Bi	Element	5.3×10^{-4}	5.2×10^{-6}	Ι	no	Rh	Element	3.25×10^{-4}	4.9×10^{-6}	I	
Cd	Element	0.52	0.0028	Ι	yes	Ru	Element	0.49	0.005	I	yes
Diamond:B	Element	11.4	4	II	yes	Si:B	Element	0.4	0.4	II	yes
Ga	Element	1.083	0.0058	I	yes	Sn	Element	3.72	0.03	I	yes
Hf	Element	0.165		I	yes	Та	Element	4.48	0.09	I	yes
a-Hg	Element	4.15	0.04	I	yes	Тс	Element	7.46–11.2	0.04	II	yes
β-Hg	Element	3.95	0.04	I	yes	α-Th	Element	1.37	0.013	I	yes
In	Element	3.4	0.03	I	yes	Ті	Element	0.39	0.01	I	yes
Ir	Element	0.14	0.0016	I	yes	П	Element	2.39	0.02	I	yes
α-La	Element	4.9		I	yes	α-U	Element	0.68		I	yes
β-La	Element	6.3		I	yes	β-U	Element	1.8		I	yes
Li	Element	4×10^{-4}		I		V	Element	5.03	1	II	yes
Мо	Element	0.92	0.0096	I	yes	a-W	Element	0.015	0.00012	I	yes
Nb	Element	9.26	0.82	II	yes	β-W	Element	1–4			
Os	Element	0.65	0.007	I	yes	Zn	Element	0.855	0.005	I	yes
Pa	Element	1.4		Ι	yes	Zr	Element	0.55	0.014	I	yes

Then there are compounds, like YBCO with $T_c = 95 \text{ K}$ (high -T_c superconductivity)

TES: Transition Edge Sensors

TES working principle

• Measure the temperature variations with a superconductor due to an energy release *E* in an absorber of capacitance *C*:

$$\Delta T = \frac{E}{C}$$

- Superconductor stabilized in temperature at the onset of the superconducting conducting transition
- Measure tiny
 resistance variations
- The steeper the R vs T the higher the sensitivity

$$\alpha \equiv \frac{d(\log R)}{d(\log T)} = \frac{T}{R} \frac{dR}{dT}$$

TES readout

- Magnetic field variations measured with a Superconducting Quantum Interference Device
- Complicated but very low noise (record energy resolution and threshold).

TES signal

- Signal amplitude in *Volts* proportional to the energy released *E*
- Weak coupling to the thermal bath *G*
- Long relaxation times ~ C/G

examples of TES in particle physics

Process under observation

Dark Matter with CRESST

0 mm

- Array of CaWO₄ absorbers read by TES
- Operated at the Gran Sasso Laboratories in Italy.
- Leader in the low energy region of • Dark Matter (energy threshold of ~30 eV)

CEvNS with NUCLEUS

Coherent Elastic v-Nucleus Scattering, discovered in 2017

$$\nu(\bar{\nu}) + A \rightarrow \nu(\bar{\nu}) + A$$

$$\sigma_{\rm CE\nu NS} = \frac{G_F^2}{4\pi} F^2(q^2) Q_W^2 E_\nu^2$$

$$Q_W = N - Z(1 - 4\sin^2\theta_W) \sim N$$

NUCLEUS will measure this process with 10% precision.

10 g of detectors with TES to observe neutrinos from a nuclear power plant

M. Vignati

Quenching factor: Nal example

Cryo-detectors have no quenching: entire energy eventually converted to phonons

The "Excess" problem

Not understood excess background rising at low energies

P. Adari, et al.: EXCESS workshop: Descriptions of rising low-energy spectra SciPost Phys. Proc. 9 (2022) 001 + D. Delicato et al EPJ C 84 (2024) 353

- Phonon bursts (crystal-support friction) ?
- Lattice relaxations after cool down?
- Phonon leakage from interactions in the supports?
- Neutrons (cosmic ray induced, radioactivity) ?

AC superconductivity

AC Conductivity

• In normal conductors $\tau \sim 10^{-14} s$ which implies $f = 16 \, {\rm THz} \, {\rm III}$

• In superconductors $\tau \to \infty$ so

•
$$\sigma_1 = 0$$

• $\sigma_2 = -j \frac{nq^2}{\omega m}$

• i.e. we only have the imaginary term (true at very low temperatures).

Kinetic inductance

• Let's try to understand what is this imaginary term of the conductivity

The impedance is
$$Z = \frac{l}{A} \frac{1}{\sigma} = j \omega \left(\frac{l}{A} \frac{m}{nq^2} \right)$$
 inductance L_k

where *I* and *A* are the length and sectional area of the conductor, respectively.

• This inductance is related to the mass of the charge carries.

The charge carries exhibit an inertia to the variation of the field's direction because they have a mass.

Inertias manifest themselves in a circuit as inductances, in this case it is the kinetic inductance, and is a property of the charge carriers.

It differs from the normal magnetic inductance which is due to the geometry of the conductor.

Kinetic Energy

• We can see the phenomenon also by computing the kinetic energy stored by the charge carriers

$$E_k = \frac{1}{2}mv^2 nlA$$

• Reminding that the current is defined as

$$I = nqvA$$

• We rewrite the energy as

$$E_k = \frac{1}{2} \frac{lm}{Anq^2} I^2 = \frac{1}{2} L_k I^2$$

- In presence of the kinetic inductance, the inertia is due to the kinetic energy stored in the charge carriers.
- In presence of the geometric inductance, the inertia is due energy stored in the magnetic field.

Two fluid model

- In a superconductor, depending on the temperature, part of the electrons may not be bound into Cooper Pairs.
- The unpaired electrons are called "quasiparticles" as they are superposition states of electrons and holes.
- Quasiparticles act as a second channel for the current, in parallel with the Cooper pairs, with high resistance.

 In DC R_{qp} is not seen, since the current flows entirely through Cooper Pairs, however in AC part of the current can flow through quasiparticles.

M. Vignati

Total impedance

M. Vignati

Kinetic Inductance Detectors

Non-equilibrium superconducting detectors invented at JPL/Caltech Day et al., Nature 425 (2003) 817

Particle absorption

- Absorbed photons or phonons can break Cooper pairs if their energy is larger than their binding energy $2\Delta.$
- The number of Copper pairs decreases, thus *L_k* increases.
- Quasiparticles are generated, R_{qp} decreases, thus R_s increases.

Resonators

Dissipation: air friction

Dissipation: parasitic resistance

Resonant circuit

 To measure the change in L and R_s the superconductor is inserted in a high quality factor (Q) resonant circuit

Variations

- Circuit constantly biased at the resonant frequency $f_{gen} = f_0$:
- Variation of *R*_s:
 - signal from amplitude shift $\delta(1/Q)$

$$\frac{1}{Q} = R_s \sqrt{\frac{L}{C}}$$

- Variation of L_k :
 - signal from frequency shift δf_0 $f_0 = \frac{1}{2\pi\sqrt{LC}}$
 - actually measured as phase shift

KID signal

- 1. Frequency sweep to measure the transmission past the resonator.
- 2. Determine the resonant frequency and bias the detector at that frequency.
- 3. Measure Phase and Amplitude Modulation of the wave transmitted past the resonator

KID Multiplexing

Different resonators can be coupled to the same feedline with slightly different resonant frequencies.

Resonant frequency modified via the capacitor (C) pattern of the circuit.

Multiplexing of 1000 KIDs with a single cryogenic amplifier demonstrated M. Vignati

Pros and cons of KIDs

Why KIDs:

- Ease in fabrication
- Insensitive to microphonics (almost)
- Insensitive to electromagnetic noise (almost)
- Insensitive to temperature instabilities
- Multiplexing (up to 1000 channels / line demonstrated)

Why not:

• sensitivity lower than TESs (> 2x worst depending on the application).

KIDs in Particle Physics

Requirements

To improve our neutrino and dark matter experiments we need

Motivations for KIDs: KIDs unique multiplexing Easy to fabricate Reproducible

The *difficult* part: KIDs are today a factor 5 off from TES

Phonon mediation

GHz operation limits the maximum sensible area of KIDs to few mm²

Scaling to several cm²: indirect detection mediated by phonons

Challenge: collect as many phonons as possible

The smaller the number of pixels the better!

First phonon mediated KIDs

APPLIED PHYSICS LETTERS 96, 263511 (2010)

High-speed phonon imaging using frequency-multiplexed kinetic inductance detectors

L. J. Swenson,^{1,a)} A. Cruciani,^{1,2} A. Benoit,¹ M. Roesch,³ C. S. Yung,⁴ A. Bideaud,¹ and A. Monfardini¹

¹Institut Néel, CNRS–Université Joseph Fourier, BP 166, 38042 Grenoble, France

²Dipartimento di Fisica, Universitá di Roma La Sapienza, p.le A. Moro 2, 00185 Roma, Italy

³Institut de Radio Astronomie Millimétrique, 300 rue de la Piscine, 38406 Saint Martin d'Hères, France

⁴Superconductor Technologies Inc., 460 Ward Drive, Santa Barbara, California 93111, USA

(Received 28 April 2010; accepted 11 June 2010; published online 1 July 2010)

M. Vignati

Interpretation from CALTECH

APPLIED PHYSICS LETTERS 100, 232601 (2012)

Position and energy-resolved particle detection using phonon-mediated microwave kinetic inductance detectors

D. C. Moore,^{1,a)} S. R. Golwala,¹ B. Bumble,² B. Cornell,¹ P. K. Day,² H. G. LeDuc,² and J. Zmuidzinas^{1,2} ¹Division of Physics, Mathematics & Astronomy, California Institute of Technology, Pasadena, California 91125, USA ²Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA

(Received 20 March 2012; accepted 22 May 2012; published online 6 June 2012)

Improving the energy resolution

Phonon efficiency [few % for Al]

M. Vignati

Resonator Q [104-5]

CALDER project

www.roma1.infn.it/exp/calder

- Al(14)Ti(33)Al(30nm) resonator
- 2x2cm² x 350µm
 Silicon substrate
- 25 eV RMS @ 0 eV
- Phonon ε ~ 10%

51

2nd R&D phase: large volumes

Wi-Fi KID at Grenoble

 $\Im(S_{21})$

Dark Matter device at CALTECH

T. Aralis et al, LTD19

<u>Design</u>

- 80 MKIDs coupled to 1 coplanar waveguide feedline
 - KIDs are aluminum
 - $\Delta_{Al} \approx 0.2 \text{ meV}$
 - Feedline is niobium
 - $\Delta_{Nb} \approx 1.5 \text{ meV}$
 - Want phonon energy to be absorbed by KIDs, not feedline
 - < 1% of phonons are above $2\Delta_{
 m Nb}$ (for NTL phonons) [1]
 - $3.0 \ GHz \le f_r \le 3.5 \ GHz$
 - For CASPER ROACH readout (potential large-scale deployment)
 - Overcoupled KIDs
 - $Q_c \ll Q_i$
 - $Q_r \ll Q_i$
 - Need bandwidth > 30 kHz to preserve phonon rise time
- High-resistivity silicon substrate
 - 75 mm diameter
 - 1 mm thick

M. Vignati

INFN way: **BULLKID**

BULLKID: phonon imaging

BULLKID-DM

Nuclear recoil detector with:

- ✓ 16 (4") BULLKIDs
 (> n2000 voxels)
- ✓ 0.8 kg of silicon target
- ✓ 200 ÷ 50 eV threshold (160 eV demonstrated)

KIDs for Particle Physics

