Calorimetry for High-Energy Physics

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

Istituto Nazionale di Fisica Nucleare

G. Gaudio INFN - Pavia

Content

- ✦ Basics on Calorimetry
- Calorimeters @Work: LHC example
- Trends in calorimetry
- Calorimeter R&D today

Calorimetry in Particle Physics

- Calorimetry is a widespread technique in Particle Physics:
 - Shower counters
 - Instrumented targets
 - Neutrino experiments
 - Proton decay/Cosmic Ray detectors
 - 4π detectors (our main topic)
- Calorimetry makes use of various detection mechanisms:
 - ✦ Scintillation
 - Ionization (Gaseous and Silicon detectors)
 - Čerenkov radiation

- Sensitive to both charged and neutral particles
- Differences in the shower patterns
 - \bullet some particle identification is possible: h/e/µ/v(missing E_T) separation

FIG. 7.33. The distribution of the full width at one-fifth maximum (FWFM) for 80 GeV electron and pion signals in SPACAL [Aco 91a]. The left-hand scale applies to the electron signals, the right-hand scale to the pion signals.

Why Calorimeters ?

- Sensitive to both charged and neutral particles
- Differences in the shower patterns
 - \bullet some particle identification is possible: h/e/µ/v(missing E_T) separation
- Calorimetry based on statistical processes
 - $\Rightarrow \sigma(E)/E \propto 1/\sqrt{E}$
 - ◆Magnetic spectrometers $\Rightarrow \Delta p/p \propto p$
- \bullet Increasing energy \Rightarrow calorimeter dimensions \propto logE to contain showers
- ✦ Fast: response times < 100 ns feasible</p>
- No magnetic field needed to measure E
- \bullet High segmentation possible \Rightarrow precise measurement of the direction of incoming particles

- Homogeneous calorimeter: absorber and active media are the same
- Sampling calorimeter: only part of shower energy deposited in active medium
 - Sampling fraction f_{samp} is usually determined with a MIP (dE/dx at minimum)

 $f_{samp} = rac{energy\ deposited\ in\ active\ medium}{total\ energy\ deposited\ in\ calorimeter}$

Which calorimeter you need?

- Physics, radiation levels, environmental conditions, budget
- Choices: active, passive materials, longitudinal and lateral segmentation etc.

6

Basic Electromagnetic Interactions

G. Gaudio – Scuola Bonaudi-Chiavassa 2024

Electromagnetic Showers: longitudinal development

Longitudinal development governed by radiation length (X_0)

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

material	X0 (cm)
Cu	1.4
Pb	0.5
W	0.35
PbW04	0.89
BGO	1.12

Electromagnetic Showers: lateral development

- Lateral shower width scales with Molière radius ρ_{M}
 - \bullet ρ_{M} much less material dependent than X_0

$$\rho_M = E_s \frac{X_0}{E_c} \qquad E_s = m_e c^2 \sqrt{4\pi/\alpha}$$
$$X_0 \propto A/Z^2, \quad E_c \propto 1/Z \quad \Rightarrow \quad \rho_M \propto A/Z$$

- Lateral shower width determined by:
 - Multiple scattering of e^{\pm} (early, 0.2 ρ_{M})
 - Compton γ s travelling away from axis (1 1.5 ρ_{M})
- Lateral containment do not show dependence on energy

- **Extra complication:** the strong interaction
- Much larger variety may occur both at the particle level and at the level of the stuck nucleus
 - Production of other particles, mainly pions
 - Some of these particles (π^0 , η) develop electromagnetic showers
 - Nuclear reactions: protons, neutrons released from nuclei
 - **Invisible energy** (nuclear binding energy, target recoil) \bullet
 - \bullet em showers: all energy carried by incoming e or y goes to ionization/excitation
 - had showers: certain fraction of energy is fundamentally undetectable +

Hadronic showers

Made of different components

- ionization and interaction with nuclei
- development similar to em shower but different scale (λ vs. X₀)
- Particle sector
- Nuclear sector

Much more complex than em showers

electrons positrons, photons, π^0

The electromagnetic fraction, fem

em decaying particles : π^0 , $\eta^0 \Rightarrow \gamma \gamma$

- ♦ % of hadronic energy going to em fluctuates heavily
- On average 1/3 of particles in first generation are π^0 s
- \bullet Π^0 s production by strongly interacting particles is an irreversible process (a "one-way street")

electrons positrons, photons, π^0

The electromagnetic fraction in hadronic showers

- π_0 decays into 2 photons start an electromagnetic shower (f_{em})
 - \bullet f_{em} grows with energy \rightarrow non-linearity
 - \bullet f_{em} varies event-by-event \rightarrow fluctuation in calorimetry response

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

 E_0 = average energy to produce a π^0 (k-1) related to average multiplicity

Fluctuations in the em shower component (fem)

Why are these important ?

- \bullet calorimeter response to em-component \neq non-em response (e/h \neq I)
- Event-to-event fluctuations are large and non-Gaussian
- fem> depends on shower energy and age

Cause of all common problems in hadron calorimeters

- Energy scale different from electrons, in energy-dependent way
- Hadronic non-linearity
- Non-Gaussian response function
- Poor energy resolution
- Calibration of the sections of a longitudinally segmented detector
- ♦ Solutions
 - Compensating calorimeters (e/h = I), e.g. Pb/plastic scintillator
 - Measure fem event-by-event

Hadronic shower profiles

Shower profiles are governed by the nuclear interaction lenght, λ_{int}

- average distance a high-energy hadron has to travel inside a medium before a nuclear interaction occurs
 - $\lambda_{\rm int}$ (g cm⁻²) \propto A^{1/3}
 - Fe 16.8 cm, Cu 15.1 cm, Pb 17.0 cm, U 10.0 cm

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

Data from [Ler 86].

FIG. 2.31. Longitudinal shower profile for 300 GeV π^- interactions in a block of uranium, measured from the induced radioactivity. The ordinate indicates the number of radioactive decays of a particular nuclide, ⁹⁹Mo, produced in the absorption of the high-energy pions.

Hadronic showers fluctuations

Very interesting measurements of the longitudinal energy deposition in em and hadronic showers were made with the "Hanging file calorimeter"

Fig. 1. (a) Schematic overview of the hanging file calorimeter (HFC). There was no transverse segmentation. The maximum depth of the calorimeter can be configured up to 2.2 m with a maximum number of 105 read-out planes. Each scintillator counter was read out separately. (b) Schematic drawing of the absorber plate.

Fluctuations (em showers)

Fluctuations (hadronic showers)

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

Hadronic lateral shower profiles

- Lateral shower profile has two components:
 - Electromagnetic core (π^0)
 - Non-em halo (mainly non-relativistic shower particles)
- Spectacular consequences for Čerenkov calorimetry
- Čerenkov light is emitted by particles with $\beta > 1/n$
 - e.g. quartz (n= 1.45) : Threshold 0.2 MeV for e, 400 MeV for p

distance to the impact point. Data from [Aco 92b].

FIG. 2.32. Average lateral profile of the energy deposited by 80 GeV π^- showering in the SPACAL detector. The collected light per unit volume is plotted as a function of the radial

Shower containment

- Depth to contain showers increases with log E
- Lateral leakage decreases as the energy goes up !
 - <fem> increases with energy
 - Electromagnetic component concentrated in a narrow cone around shower axis
 - \Rightarrow Energy fraction contained in a cylinder with a given radius increases with energy

FIG. 2.37. Average energy fraction contained in a block of matter with infinite transverse dimensions, as a function of the thickness of this absorber, expressed in nuclear interaction lengths. Shown are results for showers induced by pions of various energies in iron absorber

Invisible Energy

- In nuclear reactions some energy must be provided (binding energy) to free protons and neutrons.
- This energy doesn't result in a measurable signal (<u>invisible energy</u>)
- Invisible energy accounts on average for about 30-40% of non-em shower energy

Large event-by-event fluctuations limit resolution

(see later)

- Correlation between invisible energy
- and kinetic energy carried by
- released nucleons
- \Rightarrow Can be used for compensation

Compensation

Energy-independent way to characterize hadron calorimeters: e/h

- e = response to the em shower component
- h = response to the non-em shower component

$$\frac{e}{h} = \frac{e/mip}{f_{rel} \cdot rel/mip + f_p \cdot p/mip + f_n \cdot n/mip}$$

Neutrons have an enormous potential to amplify hadronic shower signals, and thus compensate for losses in invisible energy

Compensating calorimeters rely on neutron contribution to the signals Ingredients for compensating calorimeters

- Sampling calorimeter
- Hydrogenous active medium (recoil p!)
- Precisely tuned sampling fraction

What compensation does and does not for you

- Compensation does not guarantee high resolution
 - ✦ Fluctuations in f_{em} are eliminated, but others may be very large
- Compensation has some drawbacks
 - ◆ Small sampling fraction required → em resolution limited
 - \bullet Relies on neutrons \rightarrow calorimeter signals have to be integrated over large volume Not always possible in practice and time.

Fluctuations (em and hadronic showers)

Calorimeter's energy resolution is determined by fluctuations

 Many sources of fluctuations may play a role, for example:

- Signal quantum fluctuations (e.g. photoelectron) statistics)
- Sampling fluctuations
- Shower leakage
- Instrumental effects (e.g. electronic noise, light) attenuation, structural non-uniformity)
- but usually one source dominates
 - \blacklozenge Improve performance \Rightarrow work on that source

Energy E gives N signal quanta Poissonian fluctuations with $\sigma = \sqrt{N}$ \Rightarrow relative width $\sigma/E \propto \sqrt{N/N}$ $\Rightarrow \sigma/E \propto I/\sqrt{N} \propto a/\sqrt{E}$

Fluctuations (em and hadronic showers)

Calorimeter's energy resolution is determined by fluctuations

 Many sources of fluctuations may play a role, for example:

- ✦ Signal quantum fluctuations (e.g. photoelectron) statistics)
- Sampling fluctuations
- Shower leakage
- Instrumental effects (e.g. electronic noise, light) attenuation, structural non-uniformity)
- but usually one source dominates

 \bullet Improve performance \Rightarrow work on that source

3/E*√E (%)

- Determined by fluctuations in the number of shower particles contributing to signals Both sampling fraction and the sampling frequency are important
- **Poissonian contribution** : $\sigma_{samp}/E = a_{samp}/\sqrt{E}$

Fluctuations (em and hadronic showers)

Calorimeter's energy resolution is determined by fluctuations

 Many sources of fluctuations may play a role, for example:

- Signal quantum fluctuations (e.g. photoelectron) statistics)
- Sampling fluctuations
- Shower leakage
- Instrumental effects (e.g. electronic noise, light) attenuation, structural non-uniformity)
- but usually one source dominates

 \bullet Improve performance \Rightarrow work on that source

Structural differences in sampling fraction "Channelling" effects Electronic noise, light attenuation,.....

These fluctuations are non-Poissonian For a given average containment, longitudinal fluctuations are larger that lateral ones

 $\sigma/E = constant$

Different effects have different energy dependence

- $\sigma/E \sim E^{-1/2}$ quantum, sampling fluctuations
- $\sigma/E \sim E^{-1/4}$ shower leakage
- $\sigma/E \sim E^{-1}$ electronic noise
- structural non-uniformities
- Add in quadrature $\sigma^2_{tot} = \sigma^2_1 + \sigma^2_2 + \sigma^2_3 + \sigma^2_4 + \dots$
 - mutually uncorrelated (in general)

Fluctuations in hadron showers

- Some types of fluctuations as in em showers, plus
- Fluctuations in visible energy
 - (ultimate limit of hadronic energy resolution)
- Fluctuations in the em shower fraction, fem
 - Dominating effect in most hadron calorimeters $(e/h \neq I)$
 - Fluctuations are asymmetric in pion showers (one-way street)
 - Differences between p, π induced showers
 - No leading π^0 in proton showers (barion number conservation)

Calorimeters @ work

G. Gaudio – Scuola Bonaudi-Chiavassa 2024

Istituto Nazionale di Fisica Nucleare

Calorimeters @ LHC (examples)

ATLAS Calorimeters:

CMS Calorimeters:

- EM: Lead-Liquid Argon **+**

- - $\sigma/E \sim 3\%/\sqrt{E(GeV)} \oplus 0.5\%$

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

EM: Lead-Tungstate (PbWO4) crystal

Calorimeters @ LHC (examples)

LHC calorimeters performances

A walkthrough from physics to the detector

- Small Branching Ratio $(2.27 \pm 0.07) \times 10^{-3}$
- Large signal yield
 - high photon reconstruction and identification efficiency
 - \bullet high photon energy resolution \rightarrow narrow pick above in the diphoton invariant mass spectrum

What to measure?

Higgs mass

Sum of Weights / GeV

-Cont Bkg.

Data

10E

$$M = E_{cm} = \sqrt{(E_1 + E_2)^2 - (\mathbf{p_1} + \mathbf{p_2})^2}$$

$$m_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\alpha)}$$

G. Gaudio – Scuola Bonaudi-Chiavassa 2024

Starting point: catch the photons

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

- Detected in the Electromagnetic calorimeter
- No track in the inner detector unconverted photons
- May anyway convert (= pair production) in the material upstream

Converted photons

material budget in front of the calorimeter (CMS)

conversion vertex

 An unconverted photon is a cluster matched to neither an electron track nor a conversion vertex.

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

A converted photon is a cluster matched to a

• About 20% of photons at low $|\eta|$ convert in the ID, and up to about 65% convert at $|\eta| \sim 2.3$
From energy deposit to clusters

G. Gaudio – Scuola Bonaudi-Chiavassa 2024

All e[±], y:

Add all clusters within 3 × 5 window around seed cluster.

Converted photons only:

Add topo-clusters that have the same conversion Add topo-clusters with a track match that is part of the conversion vertex matched to the seed cluster.

seed for topo-cluster $\frac{E_{\text{cell}}}{EM}$, noise,cell

From cluster to identified photons

- Apply cluster calibration
- ✦ Measure direction
 - Use ϕ , η from measurement
 - Converted y: take photon direction from conversion and pointing
- Identification parameters
 - Calorimeter shapes
 - Shower shapes
 - Leakage into the hadronic calorimeter
 - Cuts different for converted and unconverted γ 's
 - + They are optimised in various $|\eta|$ bins (but p_T independent)
- Final energy calibration ($Z \rightarrow ee, Z \rightarrow ee\gamma, I/\psi$)

ATLAS: Lar Calorimeter

ATLAS: Lar Calorimeter

G. Gaudio – Scuola Bonaudi-Chiavassa 2024

signal dependence on the temperature of -2 %/K

ATLAS LAr readout

- Interactions mainly in lead absorber
- Charged particles ionize Ar atoms
- Elecrons drift in the LAr gap where an electric field is applied
- Signal is induced on the read-out electrodes by the • moving electrons
- Induced signals have a caracteristic triangular shape • current peak ~ energy lost by particles

Lar ATLAS Calorimeter

	 Advantages of LAr as active material Detector uniformity (easier calibration) Linearity of the response (LAr high density → no electron amplification needed) Stability with time Radiation hard High granularity possible (shaping) 	90.4 0.4 0.2	
•	 Drawbacks Sampling (but longitudinal segmentation possible) Criogenics → difficult operation, additional dead material 'Slow' charge collection: 450ns >> 25ns = LHC BC frequency 	-0.2	> > re s

τ_{BC} but the energy mation is given by the ent peak \rightarrow integration of signal over ~ 50ns

Triggering e/γ

The ATLAS e/γ triggers

CMS ECAL

CMS ECAL: PbWO₄

- ECAL (and HCAL) within magnetic vol
- Homogenous active medium (PbWO₄)
- Magnetic field-tolerant photodetectors with gain:
- Avalanche photodiode (APD) for barrel
- Vacuum phototriode (VPT) for end caps
- Pb/Si Preshower detector in end caps

Barrel crystals: $2.2 \times 2.2 \times 23 \text{ cm}^3$

Property

Density (g cm-3) Radiation length X_0 (cm) Molière radius R_M (cm) Wavelength peak (nm) Fast decay constant (ns) Light yield (y per MeV)

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

Sampling	Homogeneous scintillators			
Pb/plastic Shashlik	Liquid Xenon	CeF ₃ crystals	PbWO ₄ crystals	
4.5	3.06	6.16	8.28	
1.7	2.77	1.68	0.85	
3.4	4.1	3.39	2.19	
500	175	300	440	
<10	2.2	5	<10	
13	$\sim 5 \ x \ 10^4$	4000	100	

light yield: -2%/deg C requires stable temperature operation, within 0.05 deg C, to maintain resolution target

CMS ECAL: Readout

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

APD

CMS crystal calorimeters

- Narrow yy resonance on top of a **smoothly** falling background
- High energy resolution
- Accurate **position** measurement

- monitor crystal transparency with laser: measurements and correction
- Residual mis-calibration monitored and corrected using physics channels:
 - I. E/p ratio: electrons from W/Z decays
 - ♦ 2. Invariant mass peak in $π^0 → γγ$ decays
 - 3. Invariant mass peak in $Z^0 \rightarrow ee$ decays

CMS crystal calorimeters

- Narrow yy resonance on top of a **smoothly** falling background
- High energy resolution
- Accurate **position** measurement

- Supercluster energy containment account for:
 - Material budget before ECAL
 - Shower containment: gaps, cracks between crystals
 - Electrons and photons different behaviours in matter
- Absolute energy scale and its η dependence calibrated with electrons from Z decays

Energy Resolution

Combined (Run I) Higgs boson mass

(Run 2) Higgs boson mass

Calorimeters R&D trends

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

Istituto Nazionale di Fisica Nucleare

New Trends in Calorimetry

How to cope with physics and performance requirements?

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

new materials & technology

High Resolution Calorimetry

e⁺e⁻ 91.2 GeV Z-pole WW 161 GeV 240 GeV ZH 365 GeV tt

pp 100 TeV

97% of the SM Higgsstrahlung signal has jets in the final states

High resolution Calorimetry

Design goal future accelerators: separate W, $Z \rightarrow qq$

Future accelerators design goal

Mjj

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

Mjj

High Rate Calorimetry

- $<\mu>\approx$ 20-40 evts/crossing Runl
- $<\mu>\approx$ 50 evts/crossing RunII
- $<\mu>\approx$ 60 evts/crossing RunIII
- $<\mu> \approx 140$ evts/crossing HL-LHC

40x10⁶ bunch crossing/s 20 collisions/bunch crossing 140 PU evt/bunch crossing

High Rate Calorimetry

Effect on Jet and E^{T^{miss}} resolution @high pileup

Pile up suppression:

identify high-energy clusters, then make timing cut to retain hits of interest

VBF (H $\rightarrow\gamma\gamma$) event with one photon and one VBF jet in the same quadrant,

Irradiation changes the performance of detectors and electronics

- Total Ionizing Dose (TID)
 - Mainly due to photons, electrons and positrons
 - Measured in Gray (Gy), I Gy = I J/kg = 100 rad
- Non Ionizing Energy Loss (NIEL) / equivalent fluence (Φ eq)
 - Expressed in I MeV neutron equivalent fluence (n/cm^2)
- Thermal neutron fluence

CMS FLUKA geometry v.3.7.0.0

Dose, 3000 fb⁻¹

Garnet Fiber Crystals readout

- Garnet Fiber Crystals
 - ♦ YAG: Yttrium Aluminum Garnet
 - ♦ GAGG: Gadolinium Aluminum **Gallium Garnet**
 - ♦ GFAG: Gadolinium Fine Aluminum Gallate
- Garnet crystals are radiation hard
- Scintillation properties can be tuned with different levels of dopants (Ce,Mg) and growth conditions

SPACAL prototype with garnet crystal fibres

3		
Crytur	L L Crytur	Crytur
YAG	YAG	YAG
1L M	Fomos	
GAGG	GAGG	GFAG
Fomos	Fomos	Crytur
GAGG	GAGG	YAG

SPA

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

LHCb ECAL upgrade

		Measurements on TB modules [%]
	Sampling term	10.6 ± 0.1
ACAL-VV	Constant term	1.9 ± 0.5
ACAL DL	Sampling term	10.0 ± 0.6
ACAL-FD	Constant term	1.16 ± 0.06

R&D: Rad-hard optical calorimeters

R&D for optical calorimeters who can cope with O(300 kGy) & O(10^{14-15}) hadrons cm⁻²

Shashlik design to minimise the optical path in the scintillator. Also rad-hard WLS fibres & photodetectors

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

W/LYSO shashlik cell designed 14x14x114 mm³

Quartz capillaries with WLS liquid R&D for InGaAs SiPM

 $\sigma(E)/E \sim 10\%/\sqrt{E/GeV}$

W/CeF₃ as an alternative:

CeF₃ excellent hadron damage radiation hardness Can use SiO₂:Ce as radiation hard WLS

Two Calorimetry Approaches

Particle Flow & "High granularity paradigm"

Particle Flow combines tracking and calorimeter for optimal jet reconstruction

Jet composition:

individual particles Maximal exploitation of precise tracking measurement

> Need to minimize the confusion term as much as possible !!!

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

<u>charged hadrons</u> ~70% \rightarrow tracker $\sigma(p_T)/p_T \sim 1\%$ <u>photons</u> ~20% \rightarrow ECAL σ (E)/E <20%/ \sqrt{E} <u>neutral hadrons</u> ~10% \rightarrow HCAL σ (E)/E <60%/ \sqrt{E}

Jet energy measurement by measurement of

Particle Flow & "High granularity paradigm"

Particle Flow combines tracking and calorimeter for optimal jet reconstruction

- large radius and length \rightarrow to separate the particles large magnetic field \rightarrow to sweep out charged tracks "no" material in front of calorimeters
- - \rightarrow stay inside coil
- small Moliere radius of calorimeters \rightarrow to minimize shower overlap high granularity of calorimeters \rightarrow to separate overlapping showers
- High λ/X_0 ratio \rightarrow to distinguish Hadronic/EM showers

In order to reduce problems of shower overlap, R&D focuses on reducing the shower dimensions and decreasing the calorimeter cell size

Particle Flow & "High granularity paradigm" (INFN)

PF in action already at LHC, CMS (non optimised for PF)

- B=3.8 T
- track σ(pт)/pτ ~ 1%
- photons $\sigma(E)/E \sim 3\%/sqrt(E)$
- neutral hadrons $\sigma(E)/E \sim 120\%/sqrt(E)$

PF approach also beneficial for PU mitigation (tracks can be easily associated with production vertices)

Particle Flow and the CALICE collaboration

336 physicists/engineers from around 60 institutes and 18 countries coming from the 4 regions (Africa, America, Asia and Europe)

R&D pursued within CALICE collaboration, a 15 year long R&D

R&D moving from 1st generation prototypes demonstrating the PF concept, to 2nd generation prototypes addressing technical issues to demonstrate experimental application (mechanics, power, integration...)

High granularity calorimeter design

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

A "Calice" calorimeter is: a calorimetric system including ECAL+HCAL+X₀-thin High-**Performance Tracker** It's optimised for Particle Flow

High granularity calorimeter design

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

AHCAL

SDHCAL

3×3 cm² × 38 Scint+SiPM lay. + SS

1×1 cm² × 48 layers GRPC + SS

Example: Semi-Digital HCAL

SDHCAL with gas: **RPC**, Micromegas or **GEM**

cheaper alternative to scintillator advantages for 2 bits readout (1, several, many MIPS) over 1 bit Micromegas and GEM have potential to improve RPC dynamic range & proportionality

ArborPFA algorithm*:

It connect hits and then their clusters using distance and orientation information then correct using tracker information (momentum)

CMS Phase II upgrade: High Granular CAL orimeter for the forward region (1.5 < $|\eta|$ < 3)

High granularity (transverse & longitudinal) for PF in very dense environment: <PU> at HL-LHC 140-200

New challenges wrt CALICE: * Radiation hardness: fluence up to 10¹⁶ n cm⁻² for EE (Si has to be cooled @ -30°C) *LI Trigger + Data transfer: ~200 Tb/s to be shipped off-detector * Engineering & integration: cooling (~125kW via evaporative CO₂), power distribution, mechanics...

CMS Phase II upgrade: High Granular CALorimeter for the forward region (1.5 < $|\eta|$ < 3)

High granularity (transverse & longitudinal) for PF in very dense environment: <PU> at HL-LHC 140-200

Per Endcap	CE-E	CE-H Si Si+Scint
Absorber	Pb, CuW, Cu	Stainless steel, Cu
Depth	27.7 X ₀	10 λ
Layers	26	7 14

Both Endcaps	Silicon	Scintillator
Area	~620 m²	~370 m²
Channel Size	0.5 - 1.2 cm²	4 - 30 cm ²
# Channels	~6 M	~240 k

CMS Phase II upgrade: High Granular CALorimeter for the forward region (1.5 < $|\eta|$ < 3)

High granularity (transverse & longitudinal) for PF in very dense environment: <PU> at HL-LHC 140-200

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

CMS Phase II upgrade: High Granular CALorimeter for the forward region (1.5 < $|\eta|$ < 3)

High granularity (transverse & longitudinal) for PF in very dense environment: <PU> at HL-LHC 140-200

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

Two Calorimetry Approaches

G. Gaudio – Scuola Bonaudi-Chiavassa 2024

Aims of Dual Readout Project

- ♦ Address the factors which limit the resolution of hadron calorimeter to reach the theoretical resolution limit
 - Calibration of the calorimeter can be done with electrons
 - High resolution EM and HAD calorimetry
 - Can comply with the requirements for Future collider physics **♦**
- Study and eliminate/reduce dominant source of fluctuation

Principles of Dual Readout Calorimetry

Simultaneous measurement on event-by-event basis of elm fraction of hadron showers

Cherenkov ligh

Scintillation ligh

 $S = [f_{em} + (h/e)_s \times (1 - f_{em})] \times E$ $C = [f_{em} + (h/e)_{c} \times (1 - f_{em})] \times E$

e/h ratio of the C (S) calorimeter structure (measured)

It is possible
$$f = rac{c - s(C/S)}{(C/S)(1 - s) - (1 - c)}$$
 and $E = rac{S - \lambda C}{1 - \lambda}$

G. Gaudio – Scuola Bonaudi-Chiavassa 2024

t C	only produced by relativistic particles, dominated by electromagnetic shower component
nt S	measure dE/dx

 $c = (h/e)_C$ $s = (h/e)_S$

Principles of Dual Readout Calorimetry

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

 $\cot g \theta = \frac{1 - (h/e)_S}{1 - (h/e)_C} = \chi$

Calorimeter calibration done with electrons

Before Correction

G. Gaudio – Scuola Bonaudi-Chiavassa 2024

After Dual Readout approach

G. Gaudio – Scuola Bonaudi-Chiavassa 2024

$$e_{i} = \frac{1 - (h/e)_{S}}{1 - (h/e)_{C}} = \chi$$

$$E = \frac{S - \chi C}{1 - \chi}$$

Dual-readout R&D

Η	omogeneous	Calorimeter	Samp	ling Calorimeter
P	ossibility to solv sampling fluctua	ve light yield and ation problem.	Two types o Cherer	of fibers, either sensitive to nkov and Scintillation
Ν	leed to separat	e C and S light.	Separa	ated by construction
	2007-11 Cr	ystals DRC	2003 - 11	DREAM Cu- <u>fiber</u>
	 Single Xtals, prov PbWO₄ + Pr, N BGO BSO 	e of principles 10 doped PbWO ₄ 1 638 (2011) 47	NIM A 533 NIM A 536 NIM A 537 NIM A 548 NIM A 550	EAM COLUMN COLUM
RD52 coll	NIM A NIM A NIM A NIM A NIM A	640 (2011) 91 621 (2010) 212 604 (2009) 512 593 (2008) 530 595 (2008) 359	NIM A 581 NIM A 598 2010	(2007) 643 (2009) 422 Pb - Tile DRC
	Matrixes + DREA	M, <u>em</u> section	INST 9, (20	014) C05009
	 PbWO₄ Doped PbWO₄ BGO 	NIM A 598 (2009) 710 NIM A 686 (2012) 125 NIM A 610 (2009) 488 NIM A 584 (2008) 273	2012- 16 NIM A 762 NIM A 735 NIM A 735 NIM A 808	Cu, Pb Fiber DRC Image: Control of the control of

Proof of concept phase

Dual Readout method in sampling calorimeter

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

$$\frac{53\%}{\sqrt{E}} + 1.7\%$$

Expected to improve (based on MC simulation) by including corrections on:

- light attenuation
- lateral leakage

DR recent development: PMT vs SiPM readout

SiPM advantages:

- compact readout (no fibres sticking out)
- operation in magnetic field
- larger light yield (# of Čerenkov p.e. limits resolution)
- \bullet very high readout granularity \rightarrow particle flow "friendly"
- SiPM (potential) disadvantages:
 - signal saturation (digital light detector)
 - cross talk between Čerenkov and scintillation signals
 - ♦ dynamic range
 - instrumental effects (stability, afterpulsing, ...)

CERN SPS 20 GeV e^+ - GEANT4 (log scale)

Shower barycenter

PMT vs SiPM readout

SiPM advantages:

- compact readout (no fibres sticking out)
- operation in magnetic field
- larger light yield (# of Čerenkov p.e. limits resolution)
- \bullet very high readout granularity \rightarrow particle flow "friendly"
- SiPM (potential) disadvantages:
 - signal saturation (digital light detector)
 - cross talk between Čerenkov and scintillation signals
 - dynamic range
 - instrumental effects (stability, afterpulsing, ...)

SiPM linearity

- One SiPM per fiber
- Using multiphoton spectrum for the calibration
- Cross-calibrate high and low gain

SiPM linearity

0

Moving towards experiments

- to replace PMT

IDEA Innovative Detector for E+e- Accelerator

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

Successfully pioneered SiPM readout \rightarrow High granularity • Studying scalable solution for Mechanical construction Sensors and RO system • Full scale prototypes → Assess performance

Dual Readout method in homogeneous calorimeter

Motivations:

• High density scintillating crystal widely used in particle physics experiment: ensure excellent energy resolution for electromagnetic showers

- Calorimeters with a crystal EM compartment usually have a poor had. resolution due to
 - fluctuation of the starting point of the hadronic shower in the EM section
 - different response to the em and non-em component of the shower in the two calorimeters

Dual readout applied to an hybrid system:

Measuring fem on an event-by-event basis allows to correct for such fluctuations and allows to eliminate the main reasons for poor hadronic resolution

Crystal matrix + fiber sampling calo

Purpose of these tests: to see to what extent the dual readout principle (that worked so well to improve the hadronic performance of the DREAM in stand alone) are applicable when most of the shower is deposited in a crystal calorimeter section

Performed tests: PbWO4 matrix, BGO single Xtal, BGO matrix from L3 experiment (100 crystals) read first with 4 and then with 16 PMT

The dual-readout principle also worked well for this hybrid calorimeter system.

$$E_{HCAL} = \frac{S_{HCAL} - \chi_{HCAL}C_{HCAL}}{1 - \chi_{HCAL}}$$
$$E_{ECAL} = \frac{S_{ECAL} - \chi_{ECAL}C_{ECAL}}{1 - \chi_{ECAL}}$$
$$E_{total} = E_{HCAL} + E_{ECAL}$$

$$\chi_{HCAL} = \frac{1 - (h/e)_s^{HCAL}}{1 - (h/e)_c^{HCAL}}$$
$$\chi_{ECAL} = \frac{1 - (h/e)_s^{ECAL}}{1 - (h/e)_s^{ECAL}}$$

Dual Readout method in homogeneous calorimeter

120

Requirements for using crystals in dual readout based calorimeter: Good Čerenkov vs Scintillation separation **Response uniformity** High light yield (to reduce contribution of p.e. fluctuation to the resolution)

Separation can be achieved by:

- optical filters: exploit different spectral region of Č and S •
- time integration: exploit different time structure of C and S •

In order to have the best possible separation a crystal must have a scintillation emission:

* in a wavelength region far from the Cherenkov one

* with a decay time of order of hundreds of nanoseconds

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

* not too bright to get a good C/S ratio (<50% BGO emission)

2011 Conclusion from testing homogeneous DRC

2011: Outcomes from performed tests :

To separate the C and S component, crystals have to be *readout in non conventional way* \rightarrow results not good as the ones obtained by standard EM calorimetry

Extraction of pure C and S signals implies

- To sacrifice a large fraction of available C photons (optical filters)
- C photons are attenuated by crystal UV self absorption

Crystal + optical filters don't offer a benefit in term of C light yield in dual readout calorimetry (comparable with the one measured with the RD52 fiber calorimeter)

but this is not the end of the story ...

DR crystals: "A new hope"

Conceptual layout

- particle identification and particle flow algorithms

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

Transverse and longitudinal segmentations optimized for Exploiting SiPM readout for contained cost and power budget

DR crystals: "A new hope"

- $5 \times 5 \text{ mm}^2 \text{ SiPM} (10-15 \ \mu\text{m cell size})$
 - Rely on optical filters to separate S and C
- 3 SiPMs (one on entrance, two on exit)
 - Front: optimized for scintillation light 0
 - Rear: two SiPMs optimized for scintillation and Cherenkov light
- Different crystals require different optimization strategy for S and C detection

Scintillation

Transmittance

Hamamatsu SiPM PDE

~1/\2

500

400

600

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

Scintillation [photons/GeV]	<i>fs</i> [%]	Cherenkov [photons/GeV]	<i>fc</i> [%]
200000	100	56000	100
10000	5.0	2130	3.8
2000	1.0	140	0.25
< 20	< 0.01	160	0.3

~50 C photons/GeV is enough to achieve 3% energy resolution

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

Calorimeters:

it's happening now

The Roadmap document and process

ECFA R&D Roadmap

- CERN-ESU-017 <u>https://cds.cern.ch/record/2784893</u>
- 248 pages full text and 8 page synopsis

Endorsed by ECFA and presented to CERN Council in December 2021

- The Roadmap has identified
- General Strategic Recommendations (GSR)
- Detector R&D Themes (DRDT) for each of the taskforce topics
- Concrete R&D Tasks

Timescale of projects as approved by European Lab Director Group (LDG)

Guiding principle: Project realisation must not be delayed by detectors

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

Istituto Nazionale di Fisica Nucleare

THE 2021 ECFA DETECTOR RESEARCH AND DEVELOPMENT ROADMAP

The European Committee for Future Accelerators Detector R&D Roadmap Process Group

Future Facilities and DRDT for Calorimetry

	DRDT 6.1	Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution	
Calorimetry	DRDT 6.2	Develop high-granular calorimeters with multi-dimensional readout for optimised use of particle flow methods	
	DRDT 6.3	Develop calorimeters for extreme radiation, rate and pile-up environments	

The DRDT and the provisional time scale of facilities set high-level boundary conditions Ο Both as well as the GSR should be taken into account when formulating the R&D proposal(s) Ο

G. Gaudio – Scuola Bonaudi-Chiavassa 2024

< 2030

Calorimetry Identified Key Technologies and R&D Tasks

Key technologies and requirements are identified in Roadmap

- Si based Calorimeters
- Noble Liquid Calorimeters
- Calorimeters based on gas detectors
- Scintillating tiles and strips
- Crystal based high-resolution ECALs
- Fibre based dual readout

R&D should in particular enable

- Precision timing
- Radiation hardness

R&D Tasks are grouped into

- Must happen
- Important
- Desirable
- Already met

		Low power	6.2,6.3
		High-precision mechanical structures	6.2,6.3
	Si based	High granularity 0.5x0.5 cm ² or smaller	6.1,6.2,
	calorimeters	Large homogeneous array	6.2,6.3
		Improved elm. resolution	6.2,6.3
		Front-end processing	6.2,6.3
		High granularity (1-5 cm ²)	6.1,6.2,
	Noble liquid	Low power	6.1,6.2,
	calorimeters	Low noise	6.1,6.2,
		Advanced mechanics	6.1,6.2,
		Em. resolution O(5%/√E)	6.1,6.2,
	Calorimeters	High granularity (1-10 cm ²)	6.2,6.3
	based on gas	Low hit multiplicity	6.2,6.3
	detectors	High rate capability	6.2,6.3
		Scalability	6.2,6.3
	Scintillating	High granularity	6.1,6.2,
	tiles or strips	Rad-hard photodetectors	6.3
	•	Dual readout tiles	6.2,6.3
	Crystal-based high resolution ECAL	High granularity (PFA)	6.1,6.2,
		High-precision absorbers	6.2,6.3
		Timing for z position	6.2,6.3
		With C/S readout for DR	6.2,6.3
		Front-end processing	6.1,6.2,
	Fibre based dual	Lateral high granularity	6.2
	readout	Timing for z position	6.2
		Front-end processing	6.2
		100-1000 ps	6.2
	Timing	10-100 ps	6.1,6.2,
		<10 ps	6.1,6.2,
	Radiation	Up to 10 ¹⁶ n _{eq} /cm ²	6.1,6.2
	hardness	> 10 ¹⁶ n _{eq} /cm ²	6.3
	Excellent EM	< 3%/ \/ E	6.1,6.2
	chergy resolution		

DRDT

Important to meet several physics goals

Desirable to enhance physics reach

R&D needs being met

Sandwich calorimeters with fully embedded elx

Sensor aspects Development of calorimeter-specific sensors and materials Test and performance studies of individual elements / cells

Overall system optimization

Simulation studies to establish main performance criteria with system relevance, including timing, granularity, compactness and TDAQ concepts

Sandwich calo with fully embedded elx - ECAL

SiW ECAL	A SiW-ECAL using silicon pad sensors with analog re Builds on CALICE SiW ECAL technological prototy Extension of current prototype for continuous readout, r power consumption and cooling, • Study of the addition
DECAL Digital ECAL based on MAPS	A MAPS-based digital Silicon-Tungsten ECAL, Building on current DECAL and EPICAL projects Establish requirements of a sensor dedicated for digital ca design of next-generation sensor with calorimeter-specific
Highly Compact ECAL	Highly compact electromagnetic calorimeter with semiconder R&D on Si and GaAs sensors, including optimisation of reado • Development of thin conductive gluing. Development of electronics. Mechanics with minimal tolerances
Highly Granular Scintillator- strip Calorimeter	A tungsten-scintillator-strip (with SiPM readout) calor Engineering study for large-scale production • Timing per Scintillator material • Scintillator strip design • Active con Mechanical structure and services

eadout

- ype reduction of of timing,
- lorimetry and optimisation
- uctor sensors, out integration of readout
- 0.03 x 0.03 mm² Si 25 Araldite epoxy and ultrasonic wire bonding LumiCal Silicon sens Conductive glue High voltage ka Araldite epoxy -----

Carbon fiber support

rimeter . erformance oling system •

Sandwich calo with fully embedded elx - HCAL

MPGD-based Hadronic Calorimeter	Inspired by CALICE DHCAL & SDHCAL • Using MPGDs (examples uRWELL, resistive Micromegas) for environments
T-SDHCAL	A RPC-based semi-digital HCAL with timing capab Builds on CALICE SDHCAL technological prototyp Simulation studies extending to time information • St development of cooling and cassette concepts • Fast timin
SiPM-on-Tile AHCAL	SiPM-on-tile / steel HCAL Builds on CALICE AHCAL Technological Prototyp Extension of current detector concept to circular collic continuous readout snd higher data rate • re-evaluate need re-optimisation of detector to ensure optimal performance respecting new constraints
Highly Granular HCAL with Glass Scintillator Tiles	A variation of the CALICE AHCAL concept: Using glass scintillator tiles instead of plastic • Increase fraction – with the potential for improved energy res R&D of scintillator material: high density, high light yie

Istituto Nazionale di Fisica Nucleare

bility pe. tudy and g electronics

De. ders with d for cooling • ance while

ed sampling solution. eld, low cost

IUL

Sandwich calo with fully embedded elx - HCAL

ADRIANO3 Triple Readout	Extension of ADRIANO2 (fully active granular dual readout to three readout modes. High-density glass as Cherenkov absorber) • Plastic scintillator tiles • RPCs.
Calorimeter	optimization of the construction technique in terms of: • lig efficiency, timing resolution, and cost
Double Readout Sandwich Calorimeter	• Concept for an (almost) fully active hadron calorimeter layers of heavy scintillator (PWO) and Cherenkov medium Each read out by embedded SiPMs

calorimeter) Medium (and

ght yield, RPC

Alternating (lead glass)

Liquified Noble Gas calorimeters

- Decades of success at particle physics experiments: from R806 to ATLAS
 - Mostly LAr, a bit of LKr 0
- An appealing option for FCC-ee
 - Good energy resolution 0
 - High(-ish) granularity achievable 0
 - Linearity, uniformity, long-term stability 0
 - Easy to calibrate 0

Excellent solution for small systematics

- Lots of interesting studies / R&D to do
 - Optimization for PFlow reconstruction 0
 - Achieving very low noise 0
 - Lightweight cryostats to minimize X₀ 0
 - Designing for improved energy resolution 0

Scintillator based sampling calorimeters	Homogeneous EM crystal calorimeters	Large mass calorir
Scintillating Tile HCAL for FCC-hh, FCC-ee Dual Readout Fiber Calorimeter for Higgs Factories R&D on Spaghetti (EM) Calorimeter technologies for LHCb Upgrade II, Higgs factories, FCC-hh	Maximum Information Crystal Calorimeter for Higgs Factories High Granularity Crystal Calorimeter for Higgs Factories Fast, segmented Crystal calorimeter for Muon Collider (CRILIN)	Large mass calorir for neutring beta
High sampling fraction EM calorimeter with crystal grains (GRAiNITA) for FCC- ee		Commo • Use o • Parti
ScintCal: Scintillator mate	erial for future calorimeters	• Targ

ScintCal: **Scintillator** material for future calorimeters

G. Gaudio – Scuola Bonaudi-Chiavassa 2024

cryogenic neters

s cryogenic meters oless double decay

onalities: of SiPMs icle-Flow Friendly approach Targeting 10-100 ps timing precision

Scintillator based sampling calorimeters

> Scintillating Tile HCAL for FCC-hh, FCC-ee

Dual Readout Fiber Calorimeter for Higgs Factories

R&D on Spaghetti (EM) Calorimeter technologies for LHCb Upgrade II, Higgs factories, FCC-hh

Fast-timing, ultracompact, radiation hard, EM calorimetry (*RADiCAL*) for FCC-hh

High sampling fraction EM calorimeter with crystal grains (*GRAiNITA*) for FCCee Hadron calorimeter with scintillating tiles and WLS fibre readout and SiPMs Cost-effective production of tiles, radiation hardness for FCC-hh Organic scintillating tiles, Steel (+Pb for FCC-hh) absorber

High resolution Electromagnetic and hadronic calorimeter Organic scintillating fibres in brass or steel absorber(different solutions under development), SiPM or MCP-PMT photon detectors integration of a large number of SiPMs

Istituto Nazionale di Fisica Nucleare

Scintillator based sampling calorimeters

Scintillating Tile HCAL for FCC-hh, FCC-ee

Dual Readout Fiber Calorimeter for Higgs Factories

R&D on Spaghetti (EM) Calorimeter technologies for LHCb Upgrade II, Higgs factories, FCC-hh

Fast-timing, ultracompact, radiation hard, EM calorimetry (*RADiCAL*) for FCC-hh

High sampling fraction EM calorimeter with crystal grains (*GRAiNITA*) for FCCee

Innovative technique inspired by Shashlyk-type calorimeters. Extremely fine granularity. Grain of scintillator in dense liquid SpaCal (ECAL made of scintillating fibres in dense absorbers) with O(10-20) ps time resolution Radiation-hard (and radiation-tolerant) scintillating fibres Crystal or organic fibres in lead or tungsten absorber, hollow light guides, PMT/SiPM photon detectors, SPIDER ASIC for timing

Radiation-hard EM calorimeter with 10%/√E energy resolution and 25 ps timing resolution Radiation-hard WLS filament and SiPM Shashlik/type ECAL modules with tungsten absorber and LYSO:Ce tiles, WLS (full-length or in shower maxi

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

Homogeneous EM calorimeter based on segmented crystals with SIPMs readout and dual-readout capability Simultaneous readout of scintillation and cherenkov light signals from the same active element (heavy inorganic scintillator) High density scintillating crystals with good cherenkov yield instrumented with dedicated optical filters and SiPMs

Highly granular EM crystal based calorimeter to exploit maximum potential of PFA algorithms Integration (readout, minimize gaps, material budget), reconstruction driven by grid layout High density scintillating crystals with double-ended SiPM readout

Radiation tolerant design of a longitudinally segmented crystal EM calorimeter (10%/ \sqrt{E}) for mitigation of beam induced background at muon colliders.

Very harsh radiation environment for SiPMs, high rate of operation, large beam induced background (BIB) Lead fluoride (PbF_2) crystals, each readout with 2 channels consisting of a pairs of SiPMs connected in series

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

Electromagnetic Showers

- Longitudinal development governed by radiation length (X_0) Defined only for GeV regime
- There are important differences between showers induced by e, γ :
 - ♦ e.g. Leakage fluctuations, effects of material upstream,
 - Mean free path of $\gamma s = 9/7 X_0$

Electromagnetic Showers

Scaling with X₀ is not perfect

In high-Z materials, particle multiplication continues longer and decreases more slowly than in low-Z materials

 \bullet Ec \propto Z⁻¹

- The number of positrons strongly increases with the Z value of the absorber material
 - Example: number of e⁺/GeV in Pb is 3 times larger than in Al
 - \bullet Need more X₀ of Pb to contain shower at 90% level

Pb Z = 82Fe Z = 26Al Z = 13

Electromagnetic shower leakage (longitudinal)

- The absorber thickness needed to contain a shower increases logarithmically with energy
- The number of X₀ needed to fully contain the shower energy can be as much as 10 X₀ going from high Z to low Z absorbers
- More X_0 needed to contain γ initiated showers

for 100 GeV γ showers in ²³⁸U. Results of EGS4 calculations.

FIG. 2.17. Average energy fraction contained in a block of matter with infinite transverse dimensions, as a function of the thickness of this absorber. Shown are results for showers induced by electrons of various energies in a copper absorber (a) and results for 100 GeV electron showers in different absorber materials (b). The lower figure also shows the results

Importance of SOFT particles

Phenomena at $E < E_c$ determine important calorimeter properties

- In lead > 40% of energy deposited by e^{\pm} with E < 1 MeV
- ◆ Only I/4 deposited by e⁺, 3/4 by e⁻ (Compton, photoelectrons!)
- The e⁺ are closer to the shower axis, Compton and photoelectrons in halo

The composition of em showers:

Shown are the percentages of the energy of 10 GeV electromagnetic showers deposited through shower particles with energies below I MeV, below 4 MeV or above 20 MeV as function of the Z of the absorber material.

Lateral profile

Tails made out of Compton electrons.

Mean free path of MeV gammas becomes smaller as Z increases

- Material dependence
- Radial energy deposit profiles for 10 GeV electrons showering in Al, Cu and Pb
- Results of EGS4 calculations

Lateral shower leakage

materials and different energies.

FIG. 2.18. Average energy fraction contained in an infinitely long cylinder of absorber material, as a function of the radius of this cylinder. Results of EGS4 calculations for various absorber

A typical process

G. Gaudio – Scuola Bonaudi–Chiavassa 2024

Shower development in Lead

- π_0 decays into 2 photons start an electromagnetic shower (f_{em})
- the remaining energy
 - 56% ionizing particles (2/3 spallation protons, ٠ typically 100 MeV each, range 1cm)
 - 10% neutrons (evaporation neutrons, typically 3 MeV each)
 - **34%** invisible energy

electrons positrons, photons, π^0

breakup of nuclei (invisible energy)

- + Energy needed to release nucleons in nuclear reactions doesn't result in a measurable signal (binding energy \Rightarrow invisible)
- Spallation is the most probable process in hadronic shower. It is a 2-stage process

Fast intranuclear cascade

Quasi-free collision of incoming hadron with nucleon Nucleus excitation by distribution of nucleon energy Cascade of fast nucleons, pions produced

Slower evaporation

Due to de-excitation of intermediate nucleus **Evaporation of nucleons** Remaining energy (few MeV) released through -rays

118

Neutron production spectra

FIG. 2.29. Kinetic energy spectrum of evaporation neutrons, produced according to a Maxwell distribution with a temperature of 2 MeV. For comparison, the spectrum for a temperature of 3 MeV is given as well.

Kinetic energy spectrum of evaporation neutrons (Boltzmann-Maxwell distribution)

G. Gaudio – Scuola Bonaudi-Chiavassa 2024

$$\exp(-E/T)$$

• The λ_{int}/X_0 ratio is important for particle ID

$$\lambda_{\text{int}} (\text{g cm}^{-2}) \propto A^{1/3}$$

 $\mathbf{V} = A$

$$\Lambda_{0} = \frac{1}{4\alpha N_{A} \frac{Z^{2}}{A} z^{2} r_{e}^{2} E \ln \frac{183}{z^{\frac{1}{3}}}}$$

- In high-Z materials: $\lambda_{int}/X_0 \sim 30 \Rightarrow$ \bullet excellent e/π separator
- I cm PB + scintillator plate makes • spectacular preshower detector

Ratio of the nuclear interaction length and the radiation length as a function of Z

The 2021 test beam prototype

10x10 cm² divided in 9 towers, 1m long 16x20 capillary each (160 C + 160 S fibres)

> Capillary: 2mm OD, 1.1 mm ID Material: Brass

- Hi-quality commercially available capillary tubes
- Quite easy and fast assembly system
- Test the viability of this mechanical solution

Istituto Nazionale di Fisica Nucleare

