Monolithic Pixel Sensors for charged particle tracking at colliders and on satellites

Stefania Maria Beolé

Hadron-hadron collisions at LHC

- Measure trajectory of charged particles
 - Measure several points along the track and fit curves to the points (helix in a magnetic field)

Measure trajectory of charged particles

• Measure several points along the track and fit curves to the points (helix in a magnetic field)

Measure trajectory of charged particles

• Measure several points along the track and fit curves to the points (helix in a magnetic field)

Measure trajectory of charged particles

- Measure several points along the track and fit curves to the points (helix in a magnetic field)
- Extrapolate tracks to the point of origin
 - Determine positions of primary vertices and identify interesting collision vertex: VERTEXING
 - Find **secondary vertices** from decay of long-lived particles
- Use the track curvature to determine the particle momentum: PID

Tracking in pp collisions @LHC: low multiplicity

Tracking in pp collisions @LHC: medium multiplicity

Tracking in pp collisions @LHC : high multiplicity

Tracking in lead-lead collisions at LHC

Tracking devices

Position sensitive silicon detector: working principle

Strip, pixel, drift detectors

Tracker requirements

- Excellent spatial resolution
- Efficiency (100%)
- As little material as possible
- Time resolution (4D tracking)
- Radiation hardness

- 6 Layers, three technologies
 - SPD: Silicon Pixels (0.2 m², 9.8 Mchannels)
 - SDD: Silicon Drift (1.3 m², 133 kchannels)
 - SSD: Double-sided Strip Strip (4.9 m², 2.6 Mchannels)

Vertexing

- Pixel detector are used to provide vertex position (fast response online determination)
 - Tracklets instead of tracks
- Vertex is used as seed for tracking
- Tracks are used to refine vertex position measurement after tracking

Vertexing

- Pixel detector are used to provide vertex position (fast response online determination)
 - Tracklets instead of tracks
- Vertex is used as seed for tracking
- Tracks are used to refine vertex position measurement after tracking

17/06/24

Vertexing in high luminosity environment

HI-LUMI LHC: Pileup of 200

S. Beolé - Scuola Bonaudi-Chiavassa

Pileup of 10

Secondary vertex determination

- Go closer to the impact point
- Reduce the material budget to have a better resolution

The ALICE experiment

The ALICE experiment

- ALICE is the experiment at the LHC specifically designed for studying heavy ion collisions
- The main goal is exploring the deconfined phase of QCD matter → quark-gluon plasma
 LHC Pb-Pb → large energy density (> 15 GeV/fm³) & large volume (~ 5000 fm³)

ALICE Upgrades in LS2

Motivation:

High-precision measurements of rare probes at low transverse momentum

- Cannot be selected by hardware trigger
- Need to record large minimum-bias data sample: read out all Pb-Pb interactions up to the maximum collision rate of 50 kHz

Goal:

- Gain factor 100 in statistics for min bias sample w.r.t. runs 1+2
- Improve vertex reconstruction and tracking capabilities

Strategy:

- new ITS, MFT, FIT, TPC ROC
- update FEE of most detectors
- new integrated Online-Offline system (O²)

17/06/24

The new ITS

17/06/24

Hybrid pixel detectors

- 1 silicon layer for the sensor
- 1 silicon layer for the electronics
- each pixel is connected to the corresponding electronics channel with a bump bond
- total thickness \cong 150 + 150 = 300 μm

Bump bonding

S. Beolé - Scuola Bonaudi-Chiavassa

17/06/24

Bump bonding

New generation trackers: CMOS sensors

Digital Imaging Revolution

- Start of the "digital imaging revolution" began with the invention of the Charge-Coupled Device (CCD) in 1969
- Boyle and Smith's invention improved commercial and consumer products for decades and is one of the most important technological innovations of the past halfcentury
 - Nobel Prize in Physics 2009 Willard S. Boyle and George E. Smith "for the invention of an imaging semiconductor circuit - the CCD sensor."
- Since its inception, digital imaging has progressed through improvements in CCDs and with the emergence of Complementary Metal-Oxide Silicon (CMOS) Image Sensor technology

17/06/24

CMOS Imaging Sensor (CIS)

(Re-) Invented in the early '90

- All-in-one: Electronic Camera On Chip
- CMOS technology ⇒much lower production cost, integration of complex functionalities
- Very small pixels (today $\leq 1\mu m$, 40M pixel)
- lower power consumption and Increased speed (column- or pixel- parallel processing)

Drivers of CIS development and sales

- camera phones, vehicles, machine vision, human recognition and security, scientific/medical
- cellular camera phones account for 60% of the sales
- > 90% of the total image sensor sales in 2021 (it was 74% in 2012, 54% in 2007)

In 2022: 380 sensors/sec, @2.1\$/sensor, 6.8M 300mm wafers (480000 m² \approx 8000 ALICE 3 silicon tracker)

The inception of CMOS APS for charged particles

In 2001, Turchetta et al. started the R&D process to develop a charged particle sensors based on CIS technology.

- Implanted in lightly doped (P-) epitaxial silicon layer
- grown on top of the highly doped (P++) substrate

The charge collection diode is made of the junction between the NWELL and the P-type epitaxial layer

A monolithic active pixel sensor for charged particle tracking and imaging using standard VLSI CMOS technology

R. Turchetta^{a,*}, J.D. Berst^a, B. Casadei^a, G. Claus^a, C. Colledani^a, W. Dulinski^a, Y. Hu^a, D. Husson^a, J.P. Le Normand^a, J.L. Riester^a, G. Deptuch^{b,1}, U. Goerlach^b, S. Higueret^b, M. Winter^b

^aLEPSI, IN2P3/ULP, 23 rue du Loess, BP20, F-67037 Strasbourg, France ^bIReS, IN2P3/ULP, 23 rue du Loess, BP20, F-67037 Strasbourg, France

Monolithic pixel detector

MAPS: CMOS monolithic active pixel sensor

MAPS: sensor and electronics on the same substrate

Exploits commercial CMOS imaging sensor process to detect charge particles

A few modifications needed: DEEP P-WELL to shield CMOS circuitry and avoid loss of efficiency

main advantages:

- thin sensor (all in 1 layer, thinned down to <50 μm)
- easy integration
- low noise
- low power consumption

- Signal charge is collected from the non-depleted layer, diffusion dominated and prone to trapping after irradiation
- Deep well and substrate limit extension of the depletion: to fix this -> pixel design/process modification.

ALPIDE Monolithic Pixel Sensor

CMOS Pixel Sensor – Tower Semiconductor 180nm CMOS Imaging Sensor (CIS) Process

- In-pixel: Amplification, Discrimination, multi event buffer
- In-matrix zero suppression: priority encoding
- Ultra-low power < 47mW/cm² (< 140mW full chip)
- Detection efficiency > 99%

- Spatial resolution ~5μm
- Low fake-hit rate: << 10⁻⁶/pixel/event (10⁻⁸/pixel/event measured in data taking)
- Radiation tolerance: >270 krad (TID), > 1.7 10^{13} 1MeV/n_{eq} (NIEL)

Pixel matrix

S. Beolé - Scuola Bonaudi-Chiavassa

Pixel cell

ALPIDE and other developments

Adopted or considered for other experiments: HADES, CBM, PANDA, NUSTAR, NA61, CSES2-Limadou, iMPACT, COMPASS++/AMBER, pCT, ePIC... 17/06/24

- R&D effort within the ALICE collaboration
 - excellent collaboration with foundry
 - more than 70k chips produced and tested
 - ALICE ITS pioneers large area trackers built of MAPS (EIC, ALICE 3, FCC?)
- in parallel studies to optimise process to reach full depletion and improve time response and radiation hardness up to 10¹⁵ 1MeV/n_{eq}

Detector replicas for new experiments **sPHENIX MVTX @RHIC**
The largest MAPS pixel detector (so far)

17/06/24

Tiling up: chips to modules

 $1 \text{ ALPIDE} = 1.5 \text{ x} 3 \text{ cm}^2$

17/06/24

Tiling up: modules to staves

Stave to layers

ITS installation

ITS Bottom half barrel insertion

ITS Outer Barrel surrounding the beam pipe, MFT in the back

• Installation challenges

- Precise positioning around the beam pipe (nominal clearance ~ 2 mm)
- Manipulating from 4 m distance
- Difficult to see actual position by eye
- precise mating of top and bottom barrel halves (clearance between adjacent staves ~ 1.2 mm)
- Dry-installation tests on the surface to test and exercise procedures
- Use of 3D scans, surveys and cameras

1.2 mm nominal clearance

OB stave edge clearance when fully mated

ITS Inner Barrel Bottom and Outer Barrel

17/06/24

ITS PID from cluster size

- Hypertriton two-body decay channel reconstruction
 - Use of ITS cluster size to tag ³He daughter track and reduce ITS-TPC fake matchings (π vs ³He)
 - PID capabilities of a silicon digital detector !

S. Beolé - Scuola Bonaudi-Chiavassa

Can we improve further?

ALICE 2.1: ITS3 the "all silicon" detector

- GOAL for ALICE ITS3:
 - improve determination of primary and secondary vertices at high rate
 - go closer to interaction point
 - reduce material budget by a factor of 7 (X/X₀ 0.35%→0.086%)
- "SILICON ONLY" TRACKER?
 - exploit stitching \rightarrow large area sensors
 - thin and bend \rightarrow sigle sensor half layers

ITS2 Inner Barrel

Improvement of sensor detection efficiency: full depletion

17/06/24

ALICE

ALPIDE: sensitive epitaxial layer not depleted

- Tower Semiconductor 180nm CMOS imaging sensor process
- Signal charge is collected from the non-depleted layer, diffusion dominated and prone to trapping after irradiation
- Planar vs spherical junction
 - Planar junction: depletion thickness proportional to **square root of reverse bias**.
 - Spherical junction : depletion thickness proportional only to **cubic root of reverse bias**, inner radius R1 to be kept small for low capacitance
- Deep well and substrate limit extension of the depletion: to fix this -> pixel design/process modification.

17/06/24

W. Snoeys

Sensor optimization (1): DEPLETED MAPS

https://doi.org/10.1016/j.nima.2017.07.046 (180nm)

- GOAL: create planar junction using deep **low dose n-type implant** and deplete the epitaxial layer
- first studies within ALICE R&D: Investigator chip
- interest from ATLAS followed by many others: MALTA/TJ MONOPIX development (Bonn, CPPM, IRFU and CERN)

Sensor optimization (1): results

https://doi.org/10.1016/j.nima.2019.162404

However:

- efficiency loss at ~ 10¹⁵ 1 MeV n_{eq}/cm² on the pixel edges and corners due to a too weak lateral field
- Lateral electric field not sufficient to push the deposited charge towards the small central electrode.
- Efficiency decreases in pixel corners
- Effect amplified by radiation damage

Sensor optimization (2): improvement of the lateral field

3D TCAD simulation M. Munker et al. PIXEL2018 https://iopscience.iop.org/article/10.1088/1748-0221/14/05/C05013

• Additional deep p-type implant or gap in the low dose n-type implant improves lateral field near the pixel boundary and accelerates the signal charge to the collection electrode.

3D TCAD simulation M. Munker et al. PIXEL2018 https://iopscience.iop.org/article/10.1088/1748-0221/14/05/C05013

S. Beolé - Scuola Bonaudi-Chiavassa

Tower Semiconductor 180nm

17/06/24

Sensor optimization (2): results

- Full detection efficiency at $10^{15} n_{eq}/cm^2$
- better sensor timing

H. Pernegger et al., Hiroshima 2019,M. Dyndal et al 2020 JINST 15 P0200

3D TCAD simulation M. Munker et al. PIXEL2018 https://iopscience.iop.org/article/10.1088/1748-0221/14/05/C05013

S. Beolé - Scuola Bonaudi-Chiavassa

Tower Semiconductor 180nm

Optimization of the 65nm sensor

53

- GOAL: create planar junction using deep low dose n-type implant and deplete the epitaxial layer: same approach as 180nm
- Additional deep p-type implant or gap in the low dose ntype implant improves lateral field near the pixel boundary and accelerates the signal charge to the collection electrode.
- Process modification as side activity of ALICE R&D
- Further optimised within ATLAS R&D
- Following the experience with 180 nm, the 65 nm CIS process could be modified
- Full depletion: faster charge collection, higher radiation hardness

NWELL COLLECTION ELECTRODE

NMOS

Doping profiles

Electrostatic Potential

Completed R&D: 65nm technology validation

- ALICE ITS3 together with CERN EP R&D
 - leverages on experience with 180 nm (ALPIDE)
 - excellent links to foundry

• Main goals:

- Learn technology features
- Characterize charge collection
- Validate radiation tolerance
- Pixel prototype chips: APTS, CE65, DPTS
- Testing since September 2021:
 - huge effort shared among many institutes
 - laboratory tests with ⁵⁵Fe source
 - beam tests @ PS, SPS, Desy, MAMI

APTS:

S. Beolé - Scuola Bonaudi-Chiavassa

AREA: 1.5×1.5 mm²

17/06/24

Results for APTS: detection efficiency

57

DPTS: radiation hardness

>99% detection efficiency even after $10^{15}\,\text{NIEL}$ for 15 μm pixels at room temperature

https://doi.org/10.1016/j.nima.2023.168589 - Scuola Bonaudi-Chiavassa

- Asynchronous digital readout
- Time-over-Threshold information
- Pitch: 15×15 μm²

Results for APTS OpAmp: timing resolution

- Analog output test structure to test the timing performance of the technology
- First results from June 2022 beam test available:
 - timing performance
 - efficiency

Results for APTS OpAmp: timing resolution

- Analog output test structure to test the timing performance of the technology
- First results from June 2022 beam test available:
 - timing performance
 - efficiency

Figure 14: Left: corrected in-pixel time resolution of the modified with gap structure operated at V_{sub} =-4.8 V. Right: time resolution variation along the path from the pixel center to the edge, and to the corner.

Large area sensors: exploiting stitching

17/06/24

Stitching simplified principle

- Chip size is traditionally limited by CMOS manufacturing ("reticle size")
 - typical sizes of few cm²
 - modules are tiled with chips connected to a flexible printed circuit board
- New option: stitching, i.e. aligned exposures of a reticle to produce larger circuits
 - actively used in industry
 - a 300 mm wafer can house a chip to equip a full half-layer
 - requires dedicated chip design

MOSS carrier card, bonding tests

ER1 wafer

17/06/24

Chip development roadmap

• MLR1: first MAPS in TPSCo 65nm (2021) successfully qualified the 65nm process for particle detectors

• ER1: first stitched MAPS (2023)

- large design "exercise"
- "MOSS": 14 x 259 mm, 6.72 MPixel (22.5 x 22.5 and 18 x 18 μm2): conservative design, different pitches
- "**MOST**": 2.5 x 259 mm, 0.9 MPixel (18 x 18 μm2): more dense design
- ER2: first ITS3 sensor prototype (fall 2024)
 - ER3: ITS3 sensor production (end of 2025)

S. Beolé - Scuola Bonaudi-Chiavassa

PRESENT

ALICE

Prototypes: handling

- + ER1 wafers are thinned down to 50 μm
- Tools to pick, handle and ship chips have been developed

MOSS

A set of dedicated tools have been developed — handling is under control

Assembly on carrier boards

ONGOING R&D

Thinning and Bending of CMOS sensors: 180nm

- Bending of 180nm small size MAPS
 - 50 μm thick ITS2 chip (ALPIDE) bent to 22 mm showed excellent efficiency in the beam test in 2020
 - no significant variation in the performance
- Development of tools to bend large area silicon sensors: SuperALPIDE (9x2 ALPIDE die)

S. Beolé - Scuola Bonaudi-Chiantes://doi.org/10.1016/j.nima.2021.166280

Bending of fully processed wafers

Bending of fully processed wafers

S. Beolé - Scuola Bonaudi-Chiavassa

R = 18 mm 50 μm fully processed silicon 69

Mechanical highlights

•Prototype with integrated wafer-size sensor (L0-like) wire bonded to a FPC

•Prototype with final-grade materials for thermo-elasticity tests

Half-layer: silicon chip, 50 μ m

freestream velocity

Cylindrical support structure: carbon sandwich

S. Beolé - Scuola Bonaudi-Chiavassa

17/06/24

A silicon only experiment?

ALICE 3 (LHC LS4, 2033-34) the next concrete largescale HEP application

Largely based on CMOS technology

- ultra-precise (2.5 µm resolution) in-vacuum vertex detector
- large-area (O(60 m2)) vertex detector
- time of flight (20 ps)
- Will be a main driver for the technology development for the next decade
- De-facto prototype of an FCC-ee detector
ALICE3 Outer Tracker

60 m² silicon pixel detector

- large coverage: ±4η
- high-spatial resolution: $\approx 10 \ \mu m$
- very low material budget: X/X0 (total) ≤ 10%
- low power: $\approx 20 \text{ mW/cm}^2$
- module (O(10 x 10 cm²)) concept based on industry-standard processes for assembly and testing

IRIS: inside the beampipe

IRIS: inside the beampipe

IRIS: inside the beampipe

Vertex Detector: Iris inside the beam pipe

- Based on wafer-scale, ultra-thin, curved MAPS
 - radial distance from interaction point:
 5 mm (inside beampipe, retractable configuration)
 - unprecedented spatial resolution: $\approx 2.5 \ \mu m$
 - ... and material budget:
 ≈ 0.1% X0/layer
 - at radiation levels of: $\approx 10^{16}$ 1MeV n_{eq}/cm² + 300 Mrad
 - and hit rates up to: 94 MHz/cm²

MAPS in SPACE

CSES-02 scientific mission objectives

- Monitoring of the electromagnetic near-Earth space environment
- Analysis of the ionospheric and plasmaspheric fluctuations
- Measurements of iono-magnetospheric perturbations possibly due to seismo-electromagnetic phenomena
- Study of fluxes of high & low energy charged particles precipitating from the Inner Van Allen radiation belt
- Measurements of magnetospheric and solar activity
- Monitoring of the e.m. anthropic effects at low Earth orbit altitude
- Observations of e.m. transient phenomena caused by tropospheric activity

CSES-02 planned orbit

-82.6° to +82.6° latitude 500 km altitude Sun-synchronous 180° phase difference wrt CSES-01 Operating temperature: -30 to +50°C Operating pressure:6.65·10-3 Pa

CSES-02 main characteristics

Orbit maneuver capability Full-time operational Mass: 900 kg Power: 900 W Storage: 512 Gbyte Life cycle: > 6 years

CSES-02 payload

The High Energy Particle Detector on board of CSES-02

First detector hosting monolithic active pixel sensors (MAPS) for the tracking of charge particles in space

HEPD-02 main requirements		
Data budget	100 Gb/day	
Mass budget	50 kg	
Power budget	45 W	
Electron kinetic energy range	3 MeV ÷ 100 MeV	
Proton kinetic energy range	30 MeV ÷ 200 MeV	
Angular resolution	≤10° for e⁻ with E > 3 MeV	
Energy resolution	≤10% for e ⁻ with E > 5 MeV	
Pointing	Zenith	

Scientific goals and main features

 > measure the increase of the electron and proton fluxed due to short-time perturbations of the radiation belts
 > detect different particle populations (solar, trapped, galactic, etc.) according to the satellite position and energy
 > implements trigger configuration dedicated to gamma rays on a time basis of 5 milliseconds

https://cses.web.roma2.infn.it/?page_id=198

High Energy Particle Detector (HEPD-02)

- front trigger plane (200×180 mm)
 5 plastic scintillator bars (2 mm thick)
- direction detector (tracker) five standalone tracking modules
- rear trigger plane (150 x 150 mm)
 4 plastic scintillator bars (8 mm thick)
- range detector (150 x 150 x 10 mm) 12 plastic scintillator planes
- energy detector (150 x 150 mm) 2 crystal (LYSO) scintillator planes 3 x 2 bars (25 mm thick each)
- containment detector plastic scintillator planes (8 mm thick) 4 lateral and 1 bottom plane

Monolithic Active Pixel Sensors: first use in space

Limadou HEPD02 on the CSES2 mission

An 80 megapixel CMOS camera for charged radiation

S. Beolé - Scuola Bonaudi-Chiavassa

Advantages:

- reduces systematic uncertainties on tracking: down to 4um single-hit resolution
- no multi-hit degeneracy
- Extremely low material budget: 50um thin, control and read-out based on ultra-thin (180 um) flexible printed circuits
- Cheaper than standard microstrips
- Monolithic: in-pixel FE electronics: unmatchable S/N ratio (10⁻⁸ fake hits per trigger)

Challenges for use in space

- Tradeoff for mechanical supports: avoid multiple scattering but withstand launch acceleration and vibrations
- Limited power budget
- Heat dissipation
- Digital readout: limited information about charge

DD construction

Modules composing the tracker

ALTAI alignment with CMM

wire bond through the FPC

Monolithic Active Pixel Sensors: first use in space

S. Beolé - Scuola Bonaudi-Chiavassa

Summary

- CMOS sensors in 180nm technology successfully used for large area pixels only trackers
 - used in ALICE (ITS2, MFT), sPhenix, CSES2/Limadou (Space) and considered for other experiments (modified process)
 - limited by slow charge collection
 - process modification needed -> many developments ongoing
- Future developments rely on wafer scale sensors (ITS3, ALICE3)
 - 65nm TPSCo technology validated!!
 - extremely successful characterization campaign completed (with contribution by many groups interesed in the technology)
 - large area stitched sensors: characterization started
- Extensive R&D ongoing:
 - bending of wafer scale sensors
 - mechanical support and cooling studies

ADDITIONAL SLIDES

S. Beolé - Scuola Bonaudi-Chiavassa

FASTPIX

Simulated hexagonal unit cell – electrostatic potential:

- Hexagonal design reduces the number of neighbors and charge sharing → higher efficiency
- Hexagonal design minimizes the edge regions while maintaining area for circuitry → faster charge collection
- Optimisations important not only for timing, but also for efficiency and radiation tolerance

Preliminary test-beam results showed MIP time resolution of approximately 120-130 ps

Seed-pixel time residuals after timewalk correction for the inner region of the 10 μ m (**a**) and 20 μ m (**b**) pitch matrix.

17/06/24 J. Braach et al. Instruments 6 (2022) 13

S. Beolé - Scuola Bonaudi-Chiavassa

Tower Semiconductor 180nm

A long and complex journey....

88

On-Surface Commissioning

17/06/24

S. Beolé - Scuola Bonaudi-Chiavassa

On-Surface Commissioning results

- Cosmics tracks reconstructed
- IB: fake-hit rate of 10⁻¹⁰ / pixel / event
 - Achieved by masking fraction of 10⁻⁸ pixels
- OB: fake-hit rate of 10⁻⁸ / pixel / event
 - Achieved by masking noisy pixels common to all runs

17/06/24

Detector Control System

- DCS ready to control detector in all phases of operation:
 - Controls and configures pixel chips and entire infrastructure
 - Error recovery during a run to continue running with minimal data loss
 - Detector functionality implemented in C++ library (pixel chips, readout cards, regulator boards)
 - GUI, FSM and alarms in Siemens WinCC OA
 - fully integrated into ALICE DCS
- Routinely used during commissioning and Pilot Beams

ALICE 3: tracker + vertex detector

Conceptual study of iris tracker

- wafer-sized, bent MAPS (leveraging on ITS3 activities)
- rotary petals (thin Be walls) for secondary vacuum
- match beampipe parameters (impedance, aperture, ...)
- feed-throughs for power, cooling, data

R&D programme on mechanics, cooling, radiation tolerance

GOALS:

- Tracking and PID over large acceptance
- Excellent vertexing
- Continuous readout

REQUIREMENTS

- Tracker: low power, large surface 60 m² (challenges: yield, fill factor)
 - Monolithic CMOS sensors with timing (4D tracking)
- Vertex detector: very close to IP (challenges: high rate, high radiation load)
 - Retractable detector (iris tracker) $R_{in}\approx 5~mm$
 - Wafer-scale monolithic CMOS sensors

17/06/24

S. Beolé - Scuola Bonaudi-Chiavassa [CERN-LHCC-2022-009] LHCC review of Letter of Intent: very positive evaluation

92

Letter of intent for ALICE 3

ALICE

New ITS (ITS2) Design Objectives

- Improve impact parameter resolution by factor ~3 in r ϕ and factor ~5 in z at $p_T = 500$ MeV/c
 - Get closer to Interaction Point: 39 mm -> 23 mm
 - Reduce material budget: 1.14% X₀ -> 0.35% X₀ (inner layers)
 - Reduce pixel size: 50 x 425 μm² -> ~30 x 30 μm²
- Improve tracking efficiency and p_{T} resolution at low p_{T}
 - Increase number of track points: 6 -> 7 layers
- Fast readout
 - Readout of Pb-Pb collisions at 50 kHz (ITS1: 1 kHz) and p-p at 400 kHz

17/06/24

ITS TDR: J. Phys. G: Nucl. Part. Phys. 41 (2014) 087002

Calibration

The Challenge:

- Online calibration of 12.5 billion channels
- Threshold scan of full detector: > 50 TB of event data
- Several scans to be run sequentially
 - Threshold tuning (adjust thresholds to target)
 - Threshold scan (measure actual thresholds)

Procedure:

- DCS performs actual scans: configure and trigger test injections
- Scan runs in parallel but independently on all staves
- Distributed analysis on event processing nodes
- full procedure takes less than 30 minutes

Results:

- Scan with online analysis successfully run on full detector
- before tuning: settings used in surface commissioning, detector already fully efficient
- After tuning: Thresholds very stable on all the chips: RMS of threshold distribution compatible with what we had during production
- ENC noise ~ 5e⁻

17/06/24

Position sensitive silicon detector: working principle

segmented electrodes: position measurement

S. Beolé - Scuola Bonaudi-Chiavassa

Vertexing

S. Beolé - Scuola Bonaudi-Chiavassa

What determines the impact parameter resolution?

Vertex projection from two points: a simplified approach (telescope equation)

S. Beolé - Scuola Bonaudi-Chiavassa

Secondary vertex reconstruction

Particle	Decay Channel		c τ (μm)
D ⁰	$K^{-} \pi^{+}$	(3.8%)	123
D ⁺	K ⁻ π ⁺ π ⁺ (9.5%)		312
	K ⁺ K ⁻ π ⁺ (5.2%)		150
	p K [–] π ⁺	(5.0%)	60

