JWST RESULTS: A REVOLUTIONARY VIEW OF EARLY GALAXIES

PAOLA SANTINI

INAF – OSSERVATORIO ASTRONOMICO DI ROMA

INFN COLLOQUIA, FIRENZE, 15 APR 2024

OUTLINE OF THE TALK

- Why do we study the high-z Universe? State-of-the-art before JWST
- Overview of JWST: the ideal telescope for observing the earliest galaxies
- JWST major results
- Interpretations, challenges, open questions and future perspectives

OUTLINE OF THE TALK

- Why do we study the high-z Universe? State-of-the-art before JWST
- Overview of JWST: the ideal telescope for observing the earliest galaxies
- JWST major results
- Interpretations, challenges, open questions and future perspectives

The primordial Universe was

denser

BIG BANG

- warmer
- no stars
- no "heavy" elements

Open question When did the first galaxies form?

THE STAR FORMATION HISTORY OF THE UNIVERSE

Fundamental for reionization, BH seeds, first stars, chemical evolution, etc

THE HUBBLE LEGACY

WHY AN IR TELESCOPE?

WHY AN IR TELESCOPE?

WHY AN IR TELESCOPE?

Estimate of physical properties (e.g. stellar mass) at high z

OUTLINE OF THE TALK

- Why do we study the high-z Universe? State-of-the-art before JWST
- Overview of JWST: the ideal telescope for observing the earliest galaxies
- JWST major results
- Interpretations, challenges, open questions and future perspectives

HUGE LEAP IN SENSITIVITY

PHOTOMETRY

SPECTROSCOPY

THE IDEAL INSTRUMENT FOR DISTANT GALAXIES

OUTLINE OF THE TALK

- Why do we study the high-z Universe? State-of-the-art before JWST
- Overview of JWST: the ideal telescope for observing the earliest galaxies
- JWST major results
- Interpretations, challenges, open questions and future perspectives

including data from the GLASS program (US/IT collaboration, PI Tommaso Treu)

Adriano Fontana, Diego Paris, Marco Castellano, Emiliano Merlin, Paola Santini

and the GLASS team

ERS GLASS-JWST (PI T. Treu) NIRCam 1st epoch

The deepest image at the time.

ERS GLASS-JWST (PI T. Treu) NIRCam 1st epoch

z=12.11 t_{Univ}~350Myr

(we were expecting 0.1 galaxies at z>9)

z=10.53 t_{Univ}~430Myr

Castellano, Fontana, Treu, PS+22

HIGH-Z GALAXIES IN GLASS-JWST

NASA Press Release, 17 Nov 2022

Castellano, Fontana, Treu, PS+22

THE HIGH REDSHIFT FRONTIER (AFTER ~3 MONTHS)

Castellano, Fontana, Treu, PS+22 Naidu+22 Finkelstein,...PS+22 Harikane+23a Castellano,..,PS+23 Atek+23 Donnan+23 Bouwens+23a Bouwens+23b Adams+23 Yan+23 Labbé+23 Rodighiero+23 Furtak+23 Bradley+23

Courtesy: S. Wilkins

see also Castellano+23, Mauerhofer+23, Harikane+23, Bouwens+23a,b, Adams+23, Donnan+23, McLeod+23, Chemerynska+23 subm., ...

see also Castellano+23, Mauerhofer+23, Harikane+23a, Bouwens+23a,b, Adams+23, Donnan+23, McLeod+23, Chemerynska+23 subm., ...

Harikane+23

Mason+15

Are all these candidates truly high-z?

EXCELLENT SPECTRA AT THE HIGH REDSHIFT FRONTIER

Schaerer+22

First observations of optical emission lines at high-z

EXCELLENT SPECTRA AT THE HIGH REDSHIFT FRONTIER

Curtis-Lake+23 see also Robertson+23 UP TO Z~13!!

age_{Univ}~300-450 Myr

EXCELLEN#25 PEAR ANTENNICALIEN REDUNENT FRONTIER

BAD NEWS...

The best z~16 candidate so far...

Donnan+23 see also Finkelstein+23, Bouwens+23b, Harikane+23, Naidu+23

...is actually at z~5

Arrabal Haro+23a

Arrabal Haro, ... PS+23b

Seems to be confirmed by spectroscopy

...but models have been revised in the past months

Harikane+ (subm.)

Harikane+24

PS+23

Stellar mass accuracies improved by ~10x (at least)

and better control of systematics see also Papovich, ... PS+23

#3: A VARIETY OF PHYSICAL CONDITIONS AT HIGH-Z

PS+23

Wide range in Mass / Luminosity:

 heterogeneous high-z galaxy population (not reproduced by models)

Wide diversity also found in the ISM conditions (Schaerer+22, Sanders+23, Cameron+23, Curti+23, Tang+23, D'Eugenio+23, Nakajima+23, ...)

#3: A VARIETY OF PHYSICAL CONDITIONS AT HIGH-Z

Wide range in Mass / Luminosity:

- heterogeneous high-z galaxy population (not reproduced by models)
- high M/L → evolved stellar populations (galaxy formation faster than thought?)

#3: A VARIETY OF PHYSICAL CONDITIONS AT HIGH-Z

#4: PASSIVE GALAXIES IN THE FIRST GYR

see also Valentino+23, Strait+23, Carnall+23a, Nanayakkara+24

#4: PASSIVE GALAXIES IN THE FIRST GYR

Recently quenched galaxy at z~7.3 (700 Myr after the Big Bang)

Looser+24

Passive galaxy at z~4.7 (1.25 Gyr after the Big Bang), quenched ~600-800 Myr after the Big Bang by AGN feedback

#5: A LOT OF AGN, WITH RAPIDLY GROWING SMBH

Scholtz+23 subm.,

Labbé+23b subm., ...

- First discovery of low-luminosity AGN at high-z
- Black holes grow faster than their host galaxies at high-z

#5: A LOT OF AGN, WITH RAPIDLY GROWING SMBH

Labbé+23a

GALAXY MORPHOLOGY & STRUCTURE AT HIGH-Z

#7: A LOT OF DISKS

Disks dominate up z~5 (t_{Univ}~1.15 Gyr)

Ferreira+23 see also Kartaltepe+23, Jacobs,...,PS+23 Formed from pristine gas \rightarrow less opacity, less cooling, less fragmentation \rightarrow much bigger 100-1000 M_{sun}

Signature: hard radiation field (\rightarrow HeII line) + negligible metallicity

Nakajima & Maiolino 22

EVIDENCE OF FIRST STARS (POP III)?

OUTLINE OF THE TALK

- Why do we study the high-z Universe? State-of-the-art before JWST
- Overview of JWST: the ideal telescope for observing the earliest galaxies
- JWST major results
- Interpretations, challenges, open questions and future perspectives

TWO KEY TENSIONS

Excess of early bright galaxies

Stellar masses are too large

- Higher SF efficiency (Inayoshi+22, Harikane+23, Qin+23, Dekel+23, Mason+23, Renzini+23, Finkelstein+23, Yung+23, ...)
- Negligible dust (Ferrara+23a,b, Ziparo+23, Fiore+23, Cullen+23, Topping+23, ...)
- Top-heavy IMF, possibly PopIII stars-related (Haslbauer+22, Harikane+23a, Yajima+23, Finkelstein+23, Yung+23, Cameron+23b, Trinca+24, ...)
- AGN contribution to UV radiation (e.g., Kocevski+23, Maiolino+23subm., Labbé+23, D'Silva+23., ...)
- Stochasticity (Mason+23, Mirocha&Furlanetto+23, Shen+23, Strait+23, Looser+23subm., Looser+24 ...) in SF histories, dust attenuation variations, halo assembly; but see Pallottini&Ferrara23
- Modified cosmological model (Padmanabhan&Loeb23, Melia23,...)
- or more likely a combination of these

TWO KEY TENSIONS

Excess of early bright galaxies

Stellar masses are too large

NEED "NEW PHYSICS"?

Inconsistency (1.5 σ) with Λ CDM: measured galaxy masses are too large compared to the total mass budget of baryons within sufficiently massive DM halos

OBSERVATIONAL CAVEATS !

FUTURE

SPECTROSCOPY

- JWST operates better than expected
- Only tentative evidence for the first stars (and galaxies) so far, but a lot of <u>unexpected</u> results

In the first Gyr:

too many early/bright galaxies, rapidly chemically enriched, coming in a variety of physical conditions, including passive galaxies already in place, a lot of AGN, with rapidly growing SMBH, galaxies that have already assembled a lot of mass, and a lot of disks

\rightarrow VERY RAPID GALAXY FORMATION AT HIGH Z?

- Potentially impacting our understanding of galaxy formation
- \rightarrow keep collecting spectroscopy

"The history of astronomy is a history of receding horizons."

Edwin Hubble The Realm of the Nebulae, 1936

- JWST operates better than expected
- Only tentative evidence for the first stars (and galaxies) so far, but a lot of <u>unexpected</u> results

In the first Gyr:

too many early/bright galaxies, rapidly chemically enriched, coming in a variety of physical conditions, including passive galaxies already in place, a lot of AGN, with rapidly growing SMBH, galaxies that have already assembled a lot of mass, and a lot of disks

→ VERY RAPID GALAXY FORMATION AT HIGH Z?

THANK YOU FOR YOUR ATTENTION

- Potentially impacting our understanding of galaxy formation
- \rightarrow keep collecting spectroscopy