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Our objective

To obtain macroscopic black box model
from data to describe large crowds in big

scenarios and for long time

Where data come from?

Macroscopic simulation

We aim to obtain a model that can be less
computationally heavy. Aming to learn PDE in a
Black-Box (BB) model to solve new IVPs.

Microscopic simulation

Bridge the gap between micro and macro scale for
multidimensional problems. Use data with physics
to obtain macro-description.

Empirical data

Learn from the true dynamics.
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Macroscopic-Scale

From hydro-dynamic mechanics
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Hughes Model

Continuity equation applied to pedestrian

density coupled with the Eikonal equation

A continuum theory for the flow of pedestrians - Roger L. Hughes

p(z,y,0) = po(z,y) in  Qx{0},
pf(p )||V¢*||) -f(z,y) =0 on T, X {OaT}:

p(L,y,t) = p(0,y,t) on Iy x{0,T},
\ p( ) (L:y: t) on Pen X {O: T} .

o

Hypothesis 1. The speed at which pedestrians walk is determined
solely by the density of thesurrounding pedestrian flow and the

behavioral characteristics of the pedestrians.

Hypothesis 2. Pedestrians have a common sense of the task (called
potential) they face to reach their common destination such that any
two individuals at different locations having the samepotential would

see no advantage to either of exchanging places.

Hypothesis 3. Pedestrians seek to minimize their (accurately)

estimated travel time, but temper this behavior to avoid extremely high

densities.



Godunov scheme for continuity:

Numerical Nx = 321, Ny = 80, Lx = 40, Ly = 10
SlmU1athn Dx = 0.125, Dy = 0.125, Dt = 0.01

Fast Marching Algorithm for Eikonal equation







CNN’based PDE The model takes the variables p and @ in

input, and gives the time-derivative dp/dt in
output, thus learning the evolution operator of

1€arning WOI’kﬂOW the Hughes mode
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1. Select a new (unseen) initial condition for the density p, which is represented as
an

Nx x Ny matrix;

Data’drlven blaCk’ 2. solve the Eikonal equation to determine
b d l b d the corresponding ¢ distribution;
OX O e ase On 8. Padding operation to implement BCs;
the CNN 4, Reshape of data and evaluation of the evolution operator;

5. Integration of the evolution operator to advance in time.

—> > 9p, /ot

CNN prediction

Po (NX,Ny)
Po (inNy) o




Godunov solution of Hughes

CNN training/testing
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Results

Ground truth

Giround Truth
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Comparison between ground truth and

Population density
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Conclusions

Learn macroscopic dynamics from data

Develop a full data-driven CNN-based learning procedure to simulate realistically a crowd at
macroscopic scale.

We want to extend this approach to more realistic scenarios (presence of obstacles) and to
different kind of data (coming from microscopic simulations and/or experiments)

Faster surrogate model for PDE

Time to compute a solution of the Hughes model with Godunov scheme: 20min Time

to compute a solution from the same IC with the CNN model: 6min
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