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Deep Learning-based HPC applications

Energy-Efficient Client Selection 
in a Federated Learning scenario.

Eco-FL
Acquiring satellite images and 
detecting illegal landfills using 
Deep Learning models.

AI Eyes in the Sky

Training object-detection models 
through HPC.

YOLO and HPC
Simulation of numerous different 
earthquake configurations in a 
dense grid of hypocenters.

Focal mechanism



Application in the field of energy sustainability

Eco-FL: Enhancing Federated 
Learning Sustainability in Edge 

Computing through 
Energy-Efficient Client Selection



Federated Learning (FL)

FL enables the circumvention of problems linked 
to data distribution, safeguarding privacy. 

FL moves models where data resides, instead 
of centralizing the data for model learning.

● Server starts the FL process by initializing 
a global model, which is distributed to all 
participating clients.

● Clients train the model locally on their 
data and sends their model weights.

● Server collects and aggregates clients 
updates to create an improved global 
model and evaluates the performance. 
Then it sends the updated model to the 
clients.

● Clients train the model locally on their 
data and sends their model weights.

and so on …

● Server aggregates clients updates, 
evaluates the performance and stops the 
FL process.

1st round

2nd round

If data does not follow the same probability 
distribution and can be correlated or have different 
characteristics from one client to another, it is 
referred to as Non-IID (Non-Independently and 
Identically Distributed).



Client selection plays a crucial role in FL performance, affecting both accuracy and 
energy consumption. The proposed methodology aims to optimize client selection 
through an optimization problem focusing on two key aspects: residual energy and data 
entropy.

● Residual energy: Clients are evaluated based on their remaining energy reserves to 
select devices with the highest charge. Those with excessively low energy levels are 
excluded to prevent disruptions due to energy depletion during FL, ensuring that 
selected clients can sustain model training requirements.

● Data Entropy: Each client holds different types and amounts of data, contributing to 
the FL model. Assessment is based on the entropy of local datasets, prioritizing 
clients with diverse and information-rich data. This ensures the global model adapts 
well to varied data distributions.

Client selection optimization



Flower and HPC
To manage the FL process and establish a 
collaborative environment between a server and 
multiple clients, the Flower Framework1 was 
utilized. Flower is known for its ability to extend FL 
implementations to mobile and wireless clients, 
accommodating a range of computational, memory, 
and network resources and its adaptability in 
incorporating emerging algorithms, training 
strategies, and communication protocols.

1.  Beutel, D.J., Topal, T., Mathur, A., Qiu, X., Fernandez-Marques, J., Gao, Y., Sani, L., Li, K.H., Parcollet, T., de Gusmão, 
P.P.B., et al., 2022. Flower: A friendly federated learning framework 

IBISCO has been useful for performing FL for 1500 
rounds, with a high number of clients (100) each 
running on a different GPU and managed by a 
separate server on a different GPU. 



Benchmarks
- FedEntropy
- FedAvg
- FedProx

Datasets

Task

The case study

- CIFAR-10
- CIFAR-100
- CINIC-10

Model

FL parameters
- 100 clients
- 1500 rounds
- 5 local epochs

Scenarios 
- Homogeneous: available energy = 15 Wh
- Heterogeneous: available energy from a Gaussian probability 

distribution centered in 15 Wh with a standard deviation of 2Wh
Classify images into one class



Results

Homogeneous case: Comparison of energy consumption between Eco-FL and the 
three benchmark methods.

Comparison of energy consumption 
of Eco-FL between homogeneous 

and heterogeneous case.



YOLO: Real-Time 
Object Detection



Object detection is a computer vision method that aims to identify and classify instances of objects of 
certain classes within images, providing bounding box information for each object.
Object detection algorithms find extensive applications across domains such as autonomous vehicle 
navigation, intelligent video surveillance, medical detections and more.

Object Detection



YOLO- You Only Look Once
The YOLO algorithm, developed by Joseph Redmon et al. in 2015, is one of the most representative works 
in the field of object detection. It is a single-stage object detector that uses a convolutional neural 
network (CNN) to predict the bounding boxes and class probabilities of objects in input images.

● The input image is divided into an S x S grid 
cells of equal shape.

● Each cell predicts B bounding boxes, 
confidence scores for those boxes and C 
class probabilities.

● Non-Maximum Suppression method is 
applied to remove duplicate predictions by 
keeping only the bounding box with the 
highest confidence score among 
overlapping boxes for the same object.



YOLO revolutionizes object detection with its real-time performance, high accuracy and versatility, 
but its effectiveness is deeply tied to two critical factors: data and model complexity.

● YOLO employs a sophisticated convolutional 
neural network architecture, which entails millions 
of parameters.

Table: Number of trainable parameters varies across different 
sizes of utilized YOLO implementation version.

● Training the YOLO model to accurately detect 
objects requires exposure to a diverse range of 
visual scenarios.

● Access to large dataset can enables fine-tuning 
for specialized applications.

● More data allows for more effective optimization of 
the model's parameters during training, which can 
lead to improved accuracy, robustness, and speed 
of inference.

Model size Input size Parameters (Millions)

YOLOv8n 640 3.2

YOLOv8s 640 11.2

YOLOv8m 640 25.9

YOLOv8l 640 43.7

YOLOv8x 640 68.2



HPC Results
Goal: enhance the performance of the YOLO model on live webcam streams by fine-tuning it with custom 
datasets.

Dataset 
- Train set: 994545 images
- Validation set: 31876 images 

Gathered from COCO, Open Images v7, Pascal 
VOC and Roboflow datasets.

Table: mean training time for epoch

Training parameters
- Model size: YOLOv8l, YOLOv8x
- 1000 epochs
- 26 classes

Training time
Model 
size

1 GPU 4 GPUs 24 GPUs 32 GPUs 36 GPUs

YOLOv8l ~ 131 min ~ 100 min ~ 37 min ~ 19 min ~ 18 min 

YOLOv8x ~ 195 min ~ 150 min ~ 45 min ~ 30 min ~ 20 min



AI Eyes in the Sky
Satellite Surveillance for Landfill Detection



Waste detection through CAMs 
Class-activation maps (CAMs) are a technique used to visualize and interpret the decision-making 
process of convolutional neural networks (CNNs) in artificial vision tasks.
CAMs help to understand which parts of an image were relevant to the neural network during the 
classification of an image. This is particularly useful for making CNNs more interpretable and for verifying 
if they are considering the right visual features for making a decision.
The implementation of CAMs involves inserting a Global Average Pooling (GAP) layer after the last 
convolutional layer of a CNN, which calculates the average of each feature map produced by the 
convolutional layer. 
Therefore, when there is an image and a specific class, the CAM shows the regions of the image that 
most contributed to the class decision. This is achieved by overlaying the activation map on the original 
image, highlighting the important areas.



Waste’s Framework

Each of the input images corresponds to a 
small part of the selected area. 

The process continues iteratively until the 
entire zone of interest is scanned.



HPC Implementation
An area can include a vast number of tiles, which would make the overall analysis extremely prolonged. 
However, the process is inherently parallel, as there is no mutual dependency between the images and 
their respective results. Therefore, it is feasible to divide the area into subsections, which can be 
processed in parallel by multiple nodes.



HPC Results
Procedure Implementation: The procedure was implemented by selecting the entire area of the Caserta 
area (NA). By using 4 tiles, we were able to generate a total of 80,080 satellite images.

Results Analysis: The table below illustrates the processing times required, highlighting variations in 
relation to the number of nodes used and the number of GPUs utilized.

Nodes GPUs per Nodes Total time (h) Time per Image (s)

1 1 79.28 3.56

1 4 42.13 1.89

4 1 21.11 3.59

4 4 8.54 1.44



Focal mechanism and 
HPC for AI

Synthetic generation of seismological data



Focal mechanisms, often visualized through 
beachball diagrams, serve as a tool to interpret how 
an earthquake occurs at its source. These diagrams 
represent different directions in which the Earth can 
break during an earthquake, showing us the 'story' 
of the quake—where the stress came from and how 
it was released.

Such data can be expressed as three angular 
quantities:
strike ∈ [0, 360[
dip ∈ [0, 90]
rake ∈ [-180, 180[

These diagrams are not just crucial for predicting 
earthquake behavior but also for understanding 
fundamental geological processes. By studying 
these patterns, researchers can gain insights into 
the underground stress fields and how they 
influence seismic activities.

Focal mechanism

A focal mechanism, divided in two regions: 
compressional (C) and tensorial (T). It is 
generated with the following values:
strike = 45, dip = 60, rake = 60

Graphical definition of strike, dip and rake.



Data Generation
Given an earthquake, its focal mechanism is estimated through the first-motion P-wave polarities (p∈
{-1,0,1}) obtained from the seismic stations located nearby the earthquake, but the estimated value is 
affected by large uncertainties (given by imprecise instrument, non-detailed geological modelling). It is 
fundamental to reduce such uncertainty.

In this work we generated a dataset ⅅ, based on the theoretical propagation model (Aki and Richards 
(1980)), with the aim to understand such uncertainty. Each row of the dataset is composed as follows:

● earthquake hypocenter (x, y, z), 
● focal mechanism (strike, dip, rake), 
● angular propagation data for each station (azimuth, takeoff), 
● theoretical P wave radiation amplitude for each station, 
● first-motion P-wave polarity for each station.

The generation procedure takes in input x, y, z, strike, dip and rake and returns in output azimuth, 
takeoff, amplitude, polarity.

Biggest issue: considering all the combinations of focal mechanisms, earthquake epicenters and 
randomizations for robust estimations, we need to generate very large data (~trillions or rows).
Biggest advantage: such generation can be parallelized, hence HPC can help this.



We deployed two levels of parallelism: Node parallelism and CPU parallelism

Node parallelism: each HPC node receives a batch of focal mechanisms and all the hypocenters of the 
earthquake in input and saves N dataset files, with N the number of hypocenters.

CPU parallelism: a parallel for loop is run for each hypocenter, each core receives the batch of focal 
mechanisms for the node and a single hypocenter of the earthquake and generates a dataset file.

HPC solution

Our setup:
Hypocenter grid: ~13k points (1 km interval)
Focal mechanism grid: ~94k points (5 degrees interval)

Hardware:
Number of jobs: 32
Number of cpu cores used per each node: 48

Results:
Overall generation time with ibisco HPC: ~2 days

Estimated time without HPC (Intel Core i9-10980XE):
- single core: ~1 year
- parallel with all physical cores (18): ~1 month with 

linear speedup

Conclusion:
With HPC, it is possible to generate even more granular data in a scalable manner.



In conclusion, the applications proposed here highlight the indispensable role of High-Performance 
Computing in tackling complex scenarios. HPC has been pivotal for:

● Simulating Federated Learning Scenarios: Enhancing collaborative machine learning without 
centralized data, ensuring privacy, and reducing communication overhead.

● Accelerating Deep Learning Models: Leveraging parallel computing to efficiently train complex 
models on large datasets, significantly reducing training times.

● Resource Redistribution for Satellite Image Analysis: Effectively allocating and parallelizing 
resources to analyze extensive satellite imagery data, leading to faster results.

● Earthquake Configuration Simulation: Utilizing HPC to simulate a wide array of earthquake 
scenarios, aiding in predictive analysis and disaster preparedness.

These applications demonstrate the critical role of HPC in advancing the field of Artificial Intelligence. They 
foster an environment where innovation thrives, leading to breakthroughs that are not achievable with 
conventional computing resources. 

Despite significant progress being made in these applications with naive parallelization approaches and the 
usage of HPC systems, there is still vast potential for optimization. By refining our strategies and fully 
leveraging the available computational power, we can achieve greater efficiencies and enhance the 
productivity of AI applications.

Thoughts and Considerations
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