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Quantum states

Quantum superposition
|0⟩

|1⟩

Quantum state
|ψ⟩ = α |0⟩+ β |1⟩
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Quantum states

|0⟩

|1⟩

|0⟩

|1⟩

|ψcombined⟩ = A |01⟩+B |00⟩+ C |10⟩+D |11⟩

L systems =⇒ 2L complex parameters
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Quantum physics is hard
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Schrödinger eq.

i |Ψ̇⟩ = Ĥ︸︷︷︸
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Expectation

A = ⟨Ψ|Â|Ψ⟩

Measure
|Ψ⟩ → |An⟩ pn = | ⟨An|Ψ⟩ |2
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Quantum physics is hard

2L

Schrödinger eq.

i |Ψ̇⟩ = Ĥ︸︷︷︸
2L×2L!

|Ψ⟩
Expectation

A = ⟨Ψ|Â|Ψ⟩

POVM Measure

|Ψ⟩ → K̂n|Ψ⟩
⟨Ψ|K̂†

nK̂n|Ψ⟩
pn = ⟨Ψ|K̂†

nK̂n|Ψ⟩
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How I learned to stop worrying and love the hardness
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Publications using Ibisco

▶ Angelo Russomanno, Giulia Piccitto, Davide Rossini,
Entanglement transitions and quantum bifurcations under
continuous long-range monitoring,

Physical Review B, 108, 104313 (2023).

▶ Martina Minutillo, Procolo Lucignano, Gabriele Campagnano,
and Angelo Russomanno,
Kitaev ring threaded by a magnetic flux: Topological gap,
Anderson localization of quasiparticles, and divergence of
supercurrent derivative,

Physical Review B, 109, 064504 (2024).

▶ Giulia Piccitto, Davide Rossini, Angelo Russomanno,
The impact of different unravelings in a monitored system of
free fermions,

arXiv:2402.06597 (2024).
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Effect of a classical environment

Environment random measurements



Many-body quantum dynamics simulations with the Ibisco resource

Quantum trajectories

|ψ0⟩

|ψ(1)
t ⟩

|ψ(2)
t ⟩

|ψ(3)
t ⟩

|ψ(4)
t ⟩

|ψ(5)
t ⟩

|ψ(6)
t ⟩

Environment random measurements

“Brownian motion”

t = 0

Huge parallelization using MPI
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Coupling to an environment (monitored dynamics)
fermionic Hamiltonian

Ĥ = 1
2

∑L
j=1(ĉ

†
j ĉj+1 + ĉ†j+1ĉj)

d
dtρt = −i[Ĥ, ρt] + γ

∑L
j=1 n̂jρtn̂j −

1
2{n̂j , ρt} Lindblad equation

n̂2i = n̂i = ĉ†i ĉi
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d
dtρt = −i[Ĥ, ρt] + γ
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j=1 n̂jρtn̂j −
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2{n̂j , ρt} Lindblad equation
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Non-Hermitian stochastic quadratic Hamiltonian

|ψt⟩
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|ψt⟩ Slater determinant (discretize time and multiply L× L matrices)
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Coupling to an environment (monitored dynamics)

|ψ(t+ δt)⟩∝e
∑

j

[
δW j

t +(2⟨n̂j⟩t−1)γδt
]
n̂je−iĤδt|ψ(t)⟩+O(γ2δt2)

Trotterize

▶ Slater determinant |ψt⟩ =
∏

k

(∑
j Uj k(t)ĉ

†
j

)
|0⟩

Uj k(t) L× L/2, U †U = 1N×N .
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Coupling to an environment (monitored dynamics)
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Different (quantum-jump) unraveling
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Let’s get nonintegrable

Ĥ =
∑L

j=1

[
J
2

(
σ̂+j σ̂

−
j+1 +H. c.

)
+ V

4 σ̂
z
j σ̂

z
j+1 +

W
2 (−1)j σ̂zj

]

|ψt+δt⟩ = (1−iĤδt) |ψt⟩
+

∑
l

[
δξl(t)

(
σ̂zl − ⟨σzl ⟩t

)
− γ

2 δt
(
σ̂zl − ⟨σzl ⟩t

)2]|ψt⟩+O(γ2δt2)

δξj(t)δξl(t′) = δj lδt t′δt Gaussian uncorrelated
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+

∑
l

[
δξl(t)

(
σ̂zl − ⟨σzl ⟩t

)
− γ

2 δt
(
σ̂zl − ⟨σzl ⟩t

)2]|ψt⟩+O(γ2δt2)

δξj(t)δξl(t′) = δj lδt t′δt Gaussian uncorrelated

|ψt+δt⟩ = N e−iĤδte
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Krylov algorithm

▶ |Ψ′⟩ = e−iĤδt |Ψ⟩.

▶ Write the subspace Span{|Ψ⟩ , Ĥ |Ψ⟩ , Ĥ2 |Ψ⟩ , . . . , ĤM |Ψ⟩}
(Ĥ sparse).

▶ Expand the Hamiltonian in this basis (truncate).

▶ Converges even for M ≃ 20.

ACM Trans. Math. Softw. 24 (1) (1998)
130–156 (Expokit)

J. Chem. Phys. 85, 5870–5876 (1986)
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Quantum bifurcation
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Localization properties

▶ Inverse participation ratio IPR =
∑

{sj} | ⟨{sj}| |Ψt⟩⟩ |4 .

▶ |{sj}⟩ classical spin configurations σ̂zl |{sj}⟩ = sl |{sj}⟩.

▶ IPR ∼ 1 localized.

▶ IPR ∼ 1/dimHL fully delocalized.
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Localization properties

▶ Inverse participation ratio

log(IPR) = log
(∑

{sj} | ⟨{sj}| |Ψt⟩⟩ |4
)
(average over time

and realizations).

▶ |{sj}⟩ classical spin configurations σ̂zl |{sj}⟩ = sl |{sj}⟩.

▶ log(IPR) ∼ 0 localized.

▶ log(IPR) ∼ − log dimHL fully delocalized.

▶ log(IPR) ∼ −β log dimHL with 0 < β < 1 anomalously
delocalized.
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Localization properties

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0

 4  5  6  7  8  9  10  11  12  13

av
er

ag
e 

lo
g(

IP
R

)

log(dim(HL))

γ = 1
γ = 0.7
γ = 0.5
γ = 0.2
γ = 0.1

γ = 0.07
γ = 0.045

γ = 0.02
γ = 0.01

γ = 0.007
γ = 0.005

Linear fit log(IPR) ∼ −β log dimHL



Many-body quantum dynamics simulations with the Ibisco resource

Localization properties
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Future challenges

▶ Matrix product states and robustness of Many-Body
localization to local heating.

▶ Neural network states and QAOA dynamics.
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Thank you for your attention!


