

Spoke 5: Environment & Natural Disasters "High-performance photogrammetry for hydro-geomorphological risk monitoring"

High-Performance computing in UAV photogrammetry

La Salandra, M.*, Nicotri, S., Donvito, G., Colacicco, R., Dellino, P., Capolongo, D.

*Department of Earth and Geoenvironmental Science, University of Bari

marco.lasalandra@uniba.it

Context

- The effects of climate changes (natural causes and anthropogenic activities) are increasing the frequency and magnitude of hazardous phenomena
- Development of new mapping techniques from Unmanned Aerial Vehicles (Beyond-Visual-Line-Of-Sight, UAV swarm, some Artificial Intelligence)
- Collecting large datasets that limit the photogrammetric process due to high requirements for computing power, file size, data storage and processing time
- High-performance computing represents the key for running the Structurefrom-Motion while keeping pace with the dynamic nature of natural processes

Aims

 Development of a system based on a powerful, flexible and scalable architecture capable of processing and analyzing big datasets of UAV images, modeling in near-real time the topographic surface at the scale and extent at which natural processes act

Datasets

UAV multitemporal RGB images

DATASET 2019 3000 geotagged imgs JPEG format GSD 1.09 cm/pix Area covered 2000 x 320 m June 2019

DATASET 2021 2691 geotagged imgs JPEG format GSD 1.09 cm/pix Area covered 2300 x 320 m October 2021

DATASET 2020 3960 geotagged imgs JPEG format GSD 1.09 cm/pix Area covered 3000 x 320 m July 2020

DATASET 2022

1300 geotagged imgs JPEG format GSD 1.6 cm/pix Area covered 3000 x 320 m March 2022

A) Location of study area; B) Basento river catchment area; C) River reach investigated

UAV survey using a DJI Inspire 2 equipped with DJI Zenmuse X5S optical sensor

High-Performance photogrammetry

Batch script implementation

Automatic execution of the photogrammetric workflow on ReCaS cluster through HTCondor batch system

SERVER ROOM ReCaS-Bari (https://magnanimo.it/progetti/terziario-ed-industria/infn---recas-bari.html)

La Salandra, M., Nicotri, S., Donvito, G., Italiano, A., Colacicco, R., Miniello, G., Lapietra, I., Roseto, R., Dellino, P., Capolongo, D. (2024). A paradigm shift in processing large UAV image datasets for emergency management of natural hazards. International Journal of Applied Earth Observation and Geoinformation (under review).

High-Performance photogrammetry

Structure-from-Motion workflow implementation

La Salandra, M., Nicotri, S., Donvito, G., Italiano, A., Colacicco, R., Miniello, G., Lapietra, I., Roseto, R., Dellino, P., Capolongo, D. (2024). A paradigm shift in processing large UAV image datasets for emergency management of natural hazards. International Journal of Applied Earth Observation and Geoinformation (under review).

High-Performance photogrammetry

Test results and performance evaluation

MicMac modified (CPU)
ODM optimized (GPU)
ODM workstation

GPU Memory (average) MicMac modified (CPU) ODM workstation ODM optimized (GPU)

7

Output quality assessment

Pixel Intensity, Roughness and Positional accuracy

Workflow	Pixel Intensity (Pl _{std})	Roughness (R _{std})	RMSE [m]		
			х	Y	z
ODM workstation	53.20	0.43	0.078	0.106	0.806
MicMac modified	55.53	0.05	0.052	0.092	0.813
ODM optimized	53.42	0.22	0.031	0.023	0.767

Standard deviation values of pixel intensity (PI_{std}), Roughness standard deviation (R_{std}), and Root Mean Square Errors (RMSE) of the observed and ground truth values of Checkpoints, of the outputs derived by the dataset of 2,691 images.

Orthomosaics with 5 cm/pix resolution derived by a) ODM workstation, b) ODM optimized and c) MicMac modified workflow. DTMs with 10 cm/pix resolution derived by d) ODM workstation, e) ODM optimized and f) MicMac modified workflow.

Take-home Message

- Improving the exploitation of GPU resources and the parallel distribution, it may be possible to push further toward a future real-time processing approach
- Stress test results demonstrate the overcoming of the complexity in processing large UAV image datasets, now the challenge translates into the ability to collect such large datasets
- The implemented high-performance workflow has the potential to serve as a pivotal tool to address critical challenges identified in the field of natural hazards management

mapping the future with drone intelligence

Project funded by PNRR – European Union – NextGenerationEU – Mission 4 "Education and Research" – Component 2 "From Research to Business" – Investment 3.1 "Fund for the realization of an integrated system of research and innovation infrastructures"

https://dronselab.com/