

# High Performance Computing in Astrophysics

and applications to Radio Interferometry

#### Authors:

- 1. M. Delli Veneri, INFN Section of Naples
- 2. F. Guglielmetti, ESO Garching (PI)
- 3. M. Brescia, University of Naples Federico II
- 4. G. Longo, University of Naples Federico II



#### O. Inferring models from Data Data Cubes are pushing to the Big Data Regime



#### 1. Inverse Problems

Inferring causal factors from the observed reality

The generalised forward problem

The generalised inverse problem

$$T^m = [A]^{-1} V^{obs} + n$$

 $V^{obs} = [A]T^m + n$ 

ALWAJIII

 $V_{obs}$ 

[A]



 ${old T}m$ 

## 2. Interferometers

• Inverse imaging devices



#### 2D Fourier transform :





#### 4. The Interferometric Deconvolution Problem

The Radio Astronomer Equation (Van Cittert – Zernike Theorem)

 $\mathsf{D}(\mathsf{l},\mathsf{m}) = P(l,m) \otimes T(l,m) \otimes G(l,m) \approx \iint W(u,v)g(u,v)e^{2\pi i(ul+vm)}dudv$ 



## 5. Data Cubes are changing the Game

#### •SKA:

- weights ~ 1 TB
- 20 square degrees field of view, high sparsity;
- Expected to deliver 300 PB per antenna per year, with a total of ~ 8.5 Exabytes over the 15-year expected lifespan of the primary science program
- Online Processing required to cope with data volume and velocity

#### •ALMA:

- Weights ~ 1 GB
- Extended Sources
- Delivers 1 TB per day

#### 6. Deep Learning for Inverse Problems



 $L(\overline{y g(f(x))})$ 

#### Encoder Network

Minimizing the expected reconstruction error is equivalent to maximizing the lower bound on mutual information I(x, h). By imposing constraints on the *latent space*, it can be forced to capture relevant information in the data.

#### Decoder Network

### 7. Deep Learning for Inverse Problems



## 8. Meta Learning



Momentum

Batch Size

Warm Start

 $\theta_t$ 







- Multiple Parameter realizations are tested in parallel
- A subsample of the original problem is used to measure performance

#### 10. Bayesian Parameter Search

#### **Surrogate Model**

- probability model for f(x)
- For a value *x*, it gives the normal distribution for its prediction of *f*

#### **Acquisition Function**

- where to search next ?
- probability model for f(x)
- It tell us how advantageous is to evaluate the objective function *f at x*

**Assumption:** the time spent selecting the hyperparameters is inconsequential with respect to the time it takes to evaluate the objective function.



X

## 11. Building a Training Set with ALMASim



## 13. Deep Focus – Comparison with tCLEAN in solving the Deconvolution Problem



- The cube average size is 0.65 GBs
- Benchmarks have been performed using the following hardware:
  - 2 Intel Xeon E5-2680 (8 Cores each) -> 16 Cores
  - 1 NVIDIA Tesla V100 GPU
  - 1 TB of DDR5 RAM



## 14. Deep Focus – Comparison with other DL models on Source Finding Task



0.0 -10<sup>0</sup>

10<sup>1</sup>

Log Integrated Line Flux [Jy Hz]

10<sup>2</sup>

10<sup>3</sup>

## 15. Deep Focus – **Characterizing Sources** around Calibrators

| Algorithm | Completeness | Reliability |
|-----------|--------------|-------------|
| DF        | 96.7%        | 99.6%       |
| Sofia 2   | 22.2%        | 20.1%       |
| BlobCat   | 60.9%        | 53.0%       |
| CAE       | 78.1%        | 82.0%       |





20 40

True ∆₂

60

Ó 25 50 75

z

25

50 75 100

True z



Ó.

100 200 300 400

True flux

0

True pa

### Grazie per l'attenzione

