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0. Inferring models from Data
Data Cubes are pushing to the Big Data Regime

Resolution of Inverse 
Ill-posed problems 

• Deconvolution
• Denoising
• Source Detection
• Source Characterisation
• Regression
• Classification



• Inferring causal factors from the observed reality

The generalised forward problem 

The generalised inverse problem 

1. Inverse Problems

ALMASim

DeepFocus



• Inverse imaging devices
2. Interferometers



4. The Interferometric Deconvolution Problem

=

Sky 
Model

Primary Beam Dirty Beam NoiseObserved 
Sky

The Radio Astronomer Equation (Van Cittert – Zernike Theorem)



5. Data Cubes are changing the 
Game

•SKA:

• weights ~ 1 TB
• 20 square degrees field of view, high sparsity;

• Expected to deliver 300 PB per antenna per year, with a total of ~ 8.5 Exabytes 
over the 15-year expected lifespan of the primary science program

• Online Processing required to cope with data volume and velocity

•ALMA:

• Weights ~ 1 GB

• Extended Sources
• Delivers 1 TB per day



6. Deep Learning for Inverse Problems

Encoder Network Decoder Network
Minimizing the expected reconstruction error is 
equivalent to maximizing the lower bound on mutual 
information I(x, h). By imposing constraints on the latent 
space, it can be forced to capture relevant information in 
the data. 



CAE - VAE

ResNet – 50

ResNet – 121

VGGNet - 16

DenseNet

U-Net

7. Deep Learning for Inverse Problems



8. Meta Learning

Classical Network Optimization

Momentum Optimizer Preprocessing

Batch Size Learning Rate

Warm Start Loss Function

Grid Search

N. Layers

N. Channels

Layer Depth

Skip Connections

Activation Function

Bottleneck

Variational

Denoising Residual Connections

Pool

Dropout

Interpolation

Kernel Size

Dense

Sampling

Multi-Head Attention



9. Testing Multiple models in parallel

f(P1) Loss

f(P2) Loss

f(P3) Loss

f(P4) Loss

Data

• Multiple Parameter realizations are tested in parallel
• A subsample of the original problem is used to measure performance



10. Bayesian Parameter Search
Surrogate Model
• probability model for f(x)
• For a value x, it gives the normal 

distribution for its prediction of f

Acquisition Function
• where to search next ?
• probability model for f(x)
• It tell us how advantageous is to evaluate 

the objective function f at x

Assumption: the time spent selecting the hyperparameters is 
inconsequential with respect to the time it takes to evaluate 
the objective function. 

Absolutely True 
for Deep Learning 
Models



11. Building a Training Set with ALMASim

Gaussian 
Model

Sample Observational 
Parameters from Real ALMA 

Observations

Select Observational 
Parameters

Band Antenna Config
Peak 

Brightness

Bandwidth Integration Time Scan Time

PWV

SNR

Extende
d Model

Source 
Properties

• Simobserve

• tCLEAN

Diffuse 
Model

ALMASim

Point 
Like 
Model



13. Deep Focus – Comparison with tCLEAN in 
solving the Deconvolution Problem

• The cube average size is 0.65 GBs
• Benchmarks have been performed using the following 

hardware:
• 2 Intel Xeon E5-2680 (8 Cores each) -> 16 Cores
• 1 NVIDIA Tesla V100 GPU
• 1 TB of DDR5 RAM 



14. Deep Focus – Comparison with other DL 
models on Source Finding Task 



15. Deep Focus –
Characterizing Sources
around Calibrators

Algorithm Completeness Reliability

DF 96.7% 99.6%

Sofia 2 22.2% 20.1%

BlobCat 60.9% 53.0%

CAE 78.1% 82.0%
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