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Introduction

Introduction I

COTS Computing System

In the first half of the 1990s, Thomas Sterling and Donald Becker built a cluster of
networked computers, called Beowulf [21], as an alternative to large supercomputers.
At the time, their idea of providing “Commodity Off The Shelf (COTS)” based systems
has been a great success.

Resources for Exascale Computing

This idea is still valid and can inspire the realization of HPC computing systems, whose
computational power is far from that of the most powerful computers in the world, but
whose architecture is already compliant with incoming Exascale Era systems. Most
likely, these systems will respond to the following description:

multi-node systems, connected by high-performance networks,

where each node will have a high level of internal parallelism which will be also
made available by the accelerators based on technologies such as NVIDIA and
Intel Xe GP-GPUs (the accelerators).
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Introduction

Introduction II

Description of the IBiSCo HPC resources and their Management Services

The use of heterogeneous features aims to ensure the best use of resources for different scenar-
ios applications, such as distributed memory computing, GP-GPU accelerated workloads and their
combinations.

128 GPUs and about 1600 physical cores distributed on 32 nodes whose connections are based
on InfiniBand and NVLink technologies.

320 TB distributed on 4 storage nodes connected to the computing nodes by an InfiniBand
network.

Some Management Services are configured: NIS for authentication, Slurm for management/access
to computing resources, User Interface for cluster front-end, Lustre and NFS for storage man-
agement.

Cluster Management Services
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The Architecture of IBiSCo HPC cluster

The Architecture of the Heterogeneous High Performance Computing
Cluster I

Layered architecture

The architecture of this cluster is depicted as a set of multiple layers. The highest layer
of the architecture consists of the application layer. The lowest one consists of the
hardware resources.

The Layered Cluster Architecture
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The Architecture of IBiSCo HPC cluster

The Architecture of the Heterogeneous High Performance Computing
Cluster II

The middleware components of IBiSCo HPC cluster

The efficient use of cluster technologies is made possible by a software layer (based on
“Open Source” solutions) interposed between the lowest and the highest levels, namely
the middleware, which is based on a combination of the following technologies:

1 OpenFabrics Enterprise Distribution (OFED) [14] for drivers and libraries needed
by the Mellanox InfiniBand network cards .

2 CUDA Toolkit [13] for drivers, libraries, and, development environments, enables
NVIDA GP-GPU .

3 MPI-CUDA aware [2] implementation of OpenMPI [15] through the UCX open-
source framework [16].

4 Lustre file system [19] a distributed, parallel, and open source file system - provides
high-performance access to storage resources.
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The Architecture of IBiSCo HPC cluster

The Architecture of the Heterogeneous High Performance Computing
Cluster III

The process communication sub-layer

Bandwidth and latency in message exchange among processes are some of the issues
preventing the full exploitation of GP-GPU potential. In this regard, NVIDIA introduced

CUDA Inter-Process Copy (IPC) [10] and GPUDirect Remote Direct Memory
Access (RDMA) [7] technologies for intra- and inter-node GPU process communi-
cations for InfiniBand-based clusters.

gdrcopy to optimize inter-node GPU-to-GPU communications for small messages.
[17].

To combine these technologies with communication libraries (i.e., OpenMPI), the
Unified Communication X (UCX) open-source framework is used.

UCX is a

“... a lightweight exascale-ready communications framework ... ” optimized for
modern, high-bandwidth, low-latency networks.

It exposes a set of abstract communication primitives that automatically choose
the best available hardware resources. Supported technologies include RDMA (both
InfiniBand and RoCE), NVIDIA GP-GPU NVLink, and shared memory.



Design, Implementation, and Validation of a Heterogeneous Resource for HPC

The Architecture of IBiSCo HPC cluster

The Architecture of the Heterogeneous High Performance Computing
Cluster IV

The distributed, parallel file system sub-layer

The implementation adopted in the IBiSCo cluster is based on Lustre, a high-
performance, parallel, and distributed file system. High performance is guaranteed
by Lustre’s flexibility in supporting multiple storage technologies, from the common
ones based on Ethernet and TCP/IP to those with high-speed and low latency such
as InfiniBand and RoCE. Storage nodes host the OSTs (The Lustre Object Storage
Targets (OST) are the block devices on which data is distributed) for the two Lustre
exposed file systems:

The home file system is characterized by large disk space needs and fault toler-
ance, therefore it is made up of RAID-5 SAS HDD array.

The scratch area needs fast disk access times and no redundancy requirement,
hence it is hosted on SATA SSD disks.



Design, Implementation, and Validation of a Heterogeneous Resource for HPC

Cluster validation

Table of Contents

1 Introduction

2 The Architecture of IBiSCo HPC cluster

3 Cluster validation
Validation by cluster performance evaluation
Communication and computation validation

Communication and computation - Micro-benchmark
Communication and computation - Macro-benchmark

Communication and data storage validation
Communication and data storage - Micro-benchmark
Communication and data storage - Macro-benchmark

4 Conclusion



Design, Implementation, and Validation of a Heterogeneous Resource for HPC

Cluster validation

Validation by cluster performance evaluation

Cluster Validation I

Benchmarks for Cluster Performance Validation

In the HPC context, it is a common practice to evaluate performance (in terms of
speedup, throughput, I/O speed, etc.) as a response to the HPC workload [9] by
mean of appropriate benchmarks. The most common benchmarks in HPC context
(i.e., see [4, 8, 18]) use one of three possible strategies:

high-level benchmarks evaluate performance by testing the application-level com-
ponents;

low-level benchmarks test low-level system functions (i.e., network bandwidth and
latency).

hybrid benchmarks evaluate performance from both low and high levels.

The strategy we use is a “hybrid” approach: the tests evaluate the performance of
the highest level components (“macro benchmark tests”), which can be considered
tests from “the applications point of view”; down to the evaluation of the lowest level
components (“micro benchmark test”).
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Cluster validation

Validation by cluster performance evaluation

Cluster Validation II

Benchmarks gools

A set of micro- and macro-benchmarks are used to study communication and access to
resources. Benchmark results are provided which should be useful for:

1 filling the lack of deep understanding on how modern GP-GPU can be connected
and the actual impact of “state-of-the-art” hardware/software technologies on
multi-GPU application performance;

2 evaluating the usage of parallel file systems in applications with intensive parallel
data access.
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Cluster validation

Communication and computation validation

Communication and computation - Micro-benchmark I

Communication and computation - Micro-benchmark description

We evaluate, by the CUDA-aware version of MPI OSU Micro-Benchmarks
[3], the basic characteristics of the GPU interconnections focusing on both MPI
Peer-to-Peer (P2P) andMPI Collective (CL) GPU-TO-GPU communication
patterns.

All the tests are conducted to evaluate the performance of intra- and
inter-node communications where different combinations of RDMA, IPC,
and gdrcopy are used.

All plots use a logarithmic scale with base 2 and 10 respectively for the x
and y coordinate axis.
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Cluster validation

Communication and computation validation

Communication and computation - Micro-benchmark II

Communication and computation - P2P Micro-benchmark description

The latency and bandwidth of P2P tests are evaluated as follows:

Latency Test: the latency tests are performed in a ping-pong fashion, by
using blocking versions of the MPI functions (MPI Send and MPI Recv).

Bandwidth Test: Non-blocking versions of the MPI functions (MPI Isend

and MPI Irecv) are used in this case. The sender sends a fixed number of
consecutive messages to the recipient and waits for its reply.
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Cluster validation

Communication and computation validation

Communication and computation - Micro-benchmark III

Communication and computation - P2P Micro-benchmark results
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Cluster validation

Communication and computation validation

Communication and computation - Micro-benchmark IV

Communication and computation - Comments to P2P Micro-benchmark results

Appreciable differences can be found between the performance of intra- and inter-
node P2P communications. The intra-node communication seems to reach the
maximum bandwidth performance of 50GB/s, guaranteed by the NVLink tech-
nology, already with medium-sized messages. The same behavior cannot be wit-
nessed during inter-node communication since the performance (about 10GB/s)
is comparable to the peak performance of the InfiniBand technology only by
transmitting large-sized messages.

The use of gdrcopy technology (see blue and green lines of all the plots) signifi-
cantly improves the performance of P2P communications with small messages.
A combination of gdrcopy and GPUDirect RDMA technologies seems to be the best
choice to improve performance in all the tested configurations: it is more notice-
able in P2P inter-node communications.

All the configurations show equivalent performance when P2P intra-node commu-
nication uses large messages.

The sustainable performance values for bf GPU-TO-GPU inter-node communi-
cations seem to be, in most cases, about a tenth of the value measured for
Host-to-Host communications, which reach the InfiniBand peak performance.
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Cluster validation

Communication and computation validation

Communication and computation - Micro-benchmark V

Communication and computation - CL Micro-benchmark description

The latency of collective communications is measured via the following proce-
dure:

fixing a message size, many calls of MPI BCast, MPI Gather, MPI Reduce

(with MPI SUM operation type) functions are carried out to compute time
spent in a single call. All those time values are averaged to compute the
latency number of the Broadcast, Gather, and Reduce tests respectively
for each considered message size.

In the case of intra-node collective communications,

all the tasks are spawned on a single node. Conversely, when inter-node
collective communication is considered one task is spawned on a single
node.

Tests are performed with different task numbers P. Lines in the plots
representing tests executed on P = 2, 3, 4 are marked respectively with ■,
◆ and ▼ symbols.
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Cluster validation

Communication and computation validation

Communication and computation - Micro-benchmark VI

Communication and computation - CL Micro-benchmark results
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Cluster validation

Communication and computation validation

Communication and computation - Micro-benchmark VII

Communication and computation - Comments to CL Micro-benchmark results

No particularly perceptible changes can be observed in the Collective
Reduce test if different combinations of RDMA, IPC, and gdrcopy are used.
These differences seem more noticeable in inter-node communications

In the other Collective Tests some differences in results can only be found
for small message sizes when different combinations of RDMA, IPC, and
gdrcopy are used.
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Cluster validation

Communication and computation validation

Communication and computation - Macro-benchmark I

Communication and computation - Macro-benchmark description

To evaluate how the implemented multi-GPU heterogeneous computational
resource responds to a typical parallel workload from Scientific Comput-
ing, the CUDA-Aware version of the High Performance Linpack (HPL)
Benchmark is used.

The HPL benchmark [1] is a software package that solves a (random)
dense linear system in double precision arithmetic on distributed-memory
architectures and is currently used to compile the Top500 list of the most
powerful computers in the world [20].

The CUDA-Aware HPL benchmark [6] uses CUDA libraries to accelerate
the HPL benchmark on heterogeneous clusters, where both CPUs and
GPUs are used with minor or no modifications to the source code of HPL.
A host library intercepts the calls to BLAS DGEMM and DTRSM procedures
and executes them simultaneously on both GPUs and CPU cores. However,
the benchmark has a limit: all communications to and from GPU devices
are performed using the PCI channel.
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Cluster validation

Communication and computation validation

Communication and computation - Macro-benchmark II

Communication and computation - Macro-benchmark description

The CUDA-Aware HPL benchmark is executed on some nodes of the IBiSCo
cluster: the number of total MPI tasks is 4P where P is the number of involved
nodes. The tests are performed using different values for the problem dimension
N. The graphs show:

T (P,N): The execution time of the benchmark as a function of the number P of
nodes for some values of N;

S (P,N): The Speed-Up of the execution as a function of the number P of nodes

for some values of N. So, S (P,N) = T (1,N)
T (P,N) ;

SP (P,N): The Sustained Performance (expressed in GigaFLOPS) is obtained
during the execution as a function of the problem dimension N for some values
of P. It represents the number of Floating Point operations executable by an
algorithm in a time range;

SPF (P,N): The fraction of Peak Performance is obtained during the ex-
ecution as a function of the problem dimension N for some values of P.

So, SPF (P,N) = SP(P,N)
PP(P) where PP (P) is the Peak Performance of P nodes

when for each node all four GPU devices are considered, i.e., PP (P) =

(4NCoresGPUClockGPU +NCoresCPUClockCPU)P.
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Communication and computation validation

Communication and computation - Macro-benchmark III

Communication and computation - Macro-benchmark results
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Communication and computation validation

Communication and computation - Macro-benchmark IV

Communication and computation - Comments to Macro-benchmark results

the super linear speedup which is most remarkable for large problems. We
think this is due to the increased time spent on CPU-GPU communications
mainly as a consequence of a saturated PCI channel (indeed all the four
GPUs of a node are involved in computations);

the very low scalability of the benchmark as the number of parallel tasks
increases;

the very small fraction of the Peak Performance scored during executions:
if we consider very large problems we get just under 10% of max computa-
tional power which can be guaranteed by the computational resources.
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Cluster validation

Communication and data storage validation

Communication and data storage - Micro-benchmark I

Communication and data storage - Micro-benchmark tests description

We evaluate the basic characteristics of the implemented Lustre file systems using
the IOzone File system Benchmark [11], which generates and measures the time
to complete a set of file operations as read, write, re-read, re-write, reporting, in
the plots, the throughput performance for the same above-mentioned operations
both with and without the SYNC IOZone option. When this option is activated,
IOZone will open the files with the O SYNC flag forcing all writes to the file to go
completely to disk before returning to the benchmark.

The plots show single stream performance as a “Heat Map” of file size and request
size for two Lustre-based file systems which are an aggregation of SAS HDDs
and SATA SSDs respectively both available on storage nodes.

In the same plots, we show, as a term of comparison, the results of the same test
performed using two XFS file systems configured on different types of local disks
(SATA SSD and PCIe NVMe SSD) available on computing nodes. All plots use
a logarithmic scale with base 2 for the x and y coordinate axes.
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Communication and data storage - Micro-benchmark II

Communication and data storage - Micro-benchmark tests results
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(c)

Communication and storage micro-benchmarks results: IOZone throughput performance (in KB/s)

for read (a) and write operations with (b) and without (c) the SYNC options.



Design, Implementation, and Validation of a Heterogeneous Resource for HPC

Cluster validation

Communication and data storage validation

Communication and data storage - Micro-benchmark III

Communication and data storage - Comments to Micro-benchmark tests

on read operations, all the tested file systems show comparable perfor-
mance and suffer from large file sizes;

the Lustre file system seems to be especially performing on write opera-
tions when file size increases. This is more noticeable if the option SYNC

is activated;

on write operations, the performance of Lustre file systems seems to be
comparable (in terms of order of magnitude) with results obtained on slow
local disks (especially if the option SYNC is disabled);
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Communication and data storage - Macro-benchmark tests description

We use a benchmark based on the Block-Tridiagonal (BT) problem of the NAS
Parallel Benchmarks (NPB)[12], which is employed to test the I/O capabilities
of high-performance computing systems, especially parallel systems.

The benchmark, named BT-IO, is based on the MPI I/O Application Programmer
Interface [5] which is part of the MPI.

We report the results of the BT-IO benchmark in its “simple” configuration where
data, scattered in memory across the processors, are written to the same file.
What is considered here is the class “E” problem dimension.

During execution, one MPI task is allocated to each node, and both the Lustre
file systems are considered.
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Communication and data storage - Macro-benchmark tests results
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Communication and storage macro-benchmarks results. BT-IO results: the total time of execution

versus the time spent during IO phases (a) [left and right groups of bars are related to HDD and

SSD disks respectively]; the throughput of computing (b) and IO (c) stages expressed in MFlops/sec

and MB/s respectively
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Communication and data storage - Comments to Macro-benchmark tests
results

time spent during the IO stages might account for a meaningful portion (> 50%)
of total execution time when the number of parallel tasks is large;

the write pattern used by the tests, where each processor writes the data elements
it is responsible for directly into an output file, confirms the weak performance due
to a very high degree of fragmentation [22]. The Lustre file system based on SSD
disks better manages such type of pattern also when the number of processors
becomes large;

IO throughput seems far from the values measured by micro-benchmarks which
appear to be about a bigger order of magnitude.
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Conclusion

We presented the results of some benchmarking tests aimed at verifying and
validating all the solutions implemented during the deployment of a computing
cluster within the Italian National Project IBiSCo able to satisfy the different
computing needs of the project partners.

All the strategies implemented have been verified and evaluated by the appropriate
tools used to estimate some meaningful performance metrics of all the system
components from a micro and macro point of view.

All the macro-benchmarks confirm that the goal of achieving the maximum per-
formance of IT systems is extremely demanding.

But we are aware that, although useful for evaluating cluster performance and
highlighting the strengths of its resources, the benchmarks are also intended to
bring out any issues. All of this could be spent on improving resource users’
awareness and resource managers’ ability to implement increasingly effective
and efficient solutions.
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