High Performance Computing in **Biological Physics**

HIGH PERFORMANCE COMPUTING, BIG DATA E QUANTUM COMPUTING (ICSC)"

Complesso Universitario di Monte S. Angelo Università di Napoli "Federico II" Dipartimento di Fisica "E. Pancini"

Andrea Maria Chiariello, Napoli, 18/04/2024

IL PROGETTO IBISCO E LA TRANSIZIONE VERSO IL "CENTRO NAZIONALE DI RICERCA IN

The DNA

Classically, nucleotide sequence or "letters"

In humans, the sequence is ~3.5 billions bps long organized in 23 chromosomes (x2)

G T T A C G A T C A A T G C T A G

The sequence identifies the species and today can be obtained with extreme precision and at low costs (hundreds \$)

In mouse, it is ~2.7 billions bp long and 20 chromosomes

The gene

Gene

G T T A C G A T C G T T A C G A T C G T T A C G A T C G T T A C G A T C G T T A C G A T C G T T A C G A T C G T T A C G A T C G T T A C G A T

Proteins

Human genome has ~22.000 genes, not so different from mice (~20.000) or *Drosophila M.* (~16.000)

Actually, the remaining part is
fundamental to gene regulation:
1) Contains regulatory elements
2) Contributes to 3D architecture

Regions that encode the "recipe" of proteins through the genetic code

In humans, only 2-5% of DNA sequence encodes for proteins

Genes are regulated by enhancers

Enhancers are regulating sequences that determine the activity of a gene

An altered activity of genes can lead to severe pathogenic effects e.g. cancer and congenital diseases

Different activity of single genes determines the identity of different tissues and cell types

Genomes exhibit a multiscale spatial organization

Genomes exhibit a multiscale spatial organization

Genomes exhibit a multiscale spatial organization ~100 Mb Current Opinion in Genetics & Dev

HPC is a key resource to integrate theory and experiments and simulate real genome

AMC et al. Sci Rep, 2016, Cell Rep 2020, Biophys. J. 2020, Fiorillo et al. Nat. Methods 2021 Conte et al. Nat Comm. 2022

Polymer length N: 10²-10⁴ beads Molecules: 10¹-2*10⁴ Interactions list

(~10⁵ core hours) Do that for each parameter choice and condition

Predict the impact of pathogenic genetic mutations

Bianco et al., Nature Genetics, 2018

Understand how SARS-CoV-2 changes genome structure

A synergistic strategy combining theory, HPC and experiments

nature genetics		nature	nature methods Explore content ~ About the journal ~ Publish with us ~	
Explore content \checkmark About the journal \checkmark Publish with us \checkmark Subscribe		Explore conter		
nature > nature genetics > letters > article		<u>nature</u> > <u>natur</u>	Analysis Open access Published: 07 May 2021	
Letter Published: 16 April 2018 Polymer physics predicts the effects of structural variants on chromatin architecture		Compar using po	Comparison of the Hi-C, GAM and SPRITE methods using polymer models of chromatin	
nature			nature communications	
Explore content Y About the journal Y Publish with us Y			Explore content \checkmark About the journal \checkmark Publish with us \checkmark	
nature > articles > article			nature > nature communications > articles > article	
Article Open access Published: 17 November 2021			Article Open access Published: 13 July 2022	
Cell-type specialization is encoded by specific		35 24	Loop-extrusion and polymer phase-separation	
cinomatin topologics	nature		chromatin folding	
	Explore content 🗸 About the journal 🖌 Publish with	us Y		
	<u>nature</u> > <u>articles</u> > article		HPC resources like IbISCo	
	Article Open access Published: 20 December 2023		fundamental to invent,	
RNA-mediated symmetry br singular olfactory receptor o		ng enables ce	test and validate our models	

Conclusions

- quantitatively describe genome folding;
- essential to make models accurate and predictive;
- possibile without resources like IBiSCo.

Polymer physics models including physical mechanisms

The combination of experiment, theories and computation is

 HPC is pivotal in using those models to simulate such highly complex systems; all those kind of research would not be

Acknowledgements

Istituto Nazionale di Fisica Nucleare

Collaborators:

- Dr. Wenbo Li, Texas University, Houston
- Prof. Bing Ren, UC San Diego
- Prof. Ana Pombo, Max Delbruck Center for Molecular Medicine, Berlin
- Prof. Stavros Lomvardas, Columbia University, New York
- Dr. Sarah Kinkley, Max Planck Institute for Molecular Genetics, Berlin

Complex Systems Group

Mario Nicodemi Andrea Esposito Alex Abraham Simona Bianco Andrea Fontana Sougata Guha Mattia Conte Florinda di Piero Francesca Vercellone