IBiSco Infrastructure for Blg data and Scientific COmputing

Computational resources @ CNR

Giovanni Cantele - April 18, 2024

- 32 computing nodes + 2 switches
- 4 racks
- each computing node equipped with
 - 4 x GPU NVIDIA V100 (32 Gb memory each)
 - 2 InfiniBand ports at 100 Gb/s
 - 2 x CPU Intel Gen 2 Xeon Gold (24 physical cores each)
 - 1408 GB RAM
- 4 storage nodes (16 HHD SAS, 16 TB each + 8 SSD SATA, 1.9 TB each)

available communication channels PCIe 3.0 and NVLink 2.0 for respectively GPU-CPU and GPU-GPU communication

maximum throughput: 16 GB/s for PCI3 and 25GB/s x 2 = 50 GB/s (bidirectional communication) for NVLink

hybrid InfiniBand-Ethernet network to allow different kinds of tasks to accommodate into the most efficient communication protocol

Total CNR investment: ~ 800 kEuro

- 21 computing nodes
- 2 IB switches
- 4 storage servers
- several control units / monitors

the whole infrastructure originates from a combined effort of CNR, University of Naples "Federico II", INFN

Acknowledgments

CNR

- CNR-SPIN and CNR-ISASI Institutes
- Dr. Melania Paturzo, Dr. Oliviero Talamo

UNINA

- prof. G. Russo
- prof. P. Lucignano
- prof. G. Pepe

INFN

- Dr. Gianpaolo Carlino
- Dr. A. Doria

IBISCO team

- Dr. Luisa Carracciuolo
- Dr. Davide Bottalico

Research activities

- - Bioinformatics
 - Molecular chemistry and dynamics, quantum chemistry

Research activities

- Multidisciplinary approach + hybrid architecture approach
 - examples of computational tasks
 - run the same serial instance thousands of times (to compute averages, correlation functions, and so on)
 - diagonalize large matrices
 - Fast Fourier Transform for plane-wave basi set-based problems
 - compute matrix operators, operate with matrix operations
 - data or image analysis

Research activities

Depending on the particular application, the HPC architecture is expected to fulfil user requests in terms of

number of computing cores and/or

- RAM memory and/or
- high speed/low latency inter-node communication and/or
- high speed writing to and reading from disk
- graphical processing units are devised as accelerators to provide huge numbers of computing cores

Installed software

- Intel OneAPI (compiler suites, libraries)
- NVIDIA HPC SDK (compiler suites, libraries)
- OpenMPI
- Matlab
- several packages for scientific computing
- SLURM for job accounting and queues

Thank you for your attention

more specific talks on research activities and computationalrelated aspects will be given in the next

these should better bring out how a hybrid architecture might efficiently meet the needs of very complex and very different research tasks