New frontiers in neutrino cosmology

Maria Archidiacono

UNIVERSITÀ DEGLI STUDI DI MILANO

Genova, 17.04.2024

Why neutrino cosmology

Standard Model of particle physics

$\Lambda {\rm CDM}$ model of cosmology

Why neutrino cosmology

Standard Model of particle physics

ΛCDM model of cosmology

Why neutrino cosmology

Standard Model of particle physics

$\Lambda {\rm CDM}$ model of cosmology

Neutrinos from the lab

Min. Σm_v (NH) = 0.058 eV; Min. Σm_v (IH)= 0.100 eV

The absolute neutrino mass scale is not yet determined by neutrino oscillation data

$$n_{\beta}^2 = \Sigma_i |U_{ei}|^2 m_i^2 < 0.8 \text{ eV} (90\% \text{ CL})$$

[Aker et al. (2022)]

Sensitivity: 200 meV (90% CL)

Neutrinos from the lab

Invisible decay width of the Z-boson

 N_v = 2.9840 \pm 0.0082

Neutrino oscillation anomalies

Global fit 3(active)+1(sterile)

A short history of cosmic neutrino background

Neutrino number N_{eff} = (energy density of neutrinos + BSM light particles)

(energy density of one neutrino species)

N_{eff}SM = 3.044 ± 0.001 [Mangano et al. 2002, Froustey et al. 2020, Drewes et al. 2024]

A short history of cosmic neutrino background

Neutrino non-relativistic transition:

$$z_{\mathrm{nr},i} = \frac{m_{\nu,i}}{0.5\,\mathrm{eV}}$$

Late times: neutrinos as matter

• Neutrino mass
$$\,\Omega_
u h^2 = rac{\sum m_{
u,i}}{93.12 {
m eV}}\,$$
 [Mangano et al. 2005, Froustey et al. 2020]

not individual masses [Archidiacono et al. 2020]

Cosmological observables

Early Universe CMB (z=1080) Temperature, polarization, (lensing)

Cosmological observables

Plan

- Neutrino mass
- Neutrino number and new light particles

 $N_{eff} = N_{eff}^{SM} (=3.044) + \Delta N_{eff}$

Neutrino mass probes: CMB

Neutrino mass constraints: CMB

Neutrino mass probes: structure formation

• Free-Streaming $d_{\mathrm{FS},i} \sim 1 \,\mathrm{Gpc} \frac{eV}{m_{\nu,i}}$

CDM

$$m_{
u} = 0.5 \,\, eV$$

Villaescusa Navarro et al. (2013)

Neutrino mass probes: P(k)

- Massive neutrinos do not cluster
- Massive neutrinos slow down the growth of CDM perturbations
 - \circ Massless neutrino Universe $\delta^{m_
 u=0}_{
 m cdm} \propto a$
 - $_{
 m O}$ Massive neutrino Universe $\delta^{m_
 u
 eq 0}_{
 m cdm} \propto a^{1-rac{3}{5}rac{\Omega_
 u}{\Omega_m}}$

15

Neutrino mass constraints: recent history

Stage IV Large Scale Surveys

Spectroscopy Imaging

Euclid in a nutshell

- **ESA** M2 space mission in the framework of the Cosmic Vision program
- Launch July 1st 2023. Duration > 6 years
- 1.2m telescope with two instruments: Visible Imager (VIS) and Near Infrared Spectrometer and Photometer (NISP)
- Wide survey (14.000 deg²) and deep survey (40 deg² in 3 different fields)
- Measurements of over 1 billion images and more than 20 millions spectra of galaxies out to z>2
- Main scientific objectives: Dark Energy, Dark Matter, and General Relativity
- Primary probes: Galaxy Clustering and Weak Lensing (<u>1% accuracy</u>)

Neutrino mass probes: P(k)

- Massive neutrinos do not cluster
- Massive neutrinos slow down the growth of CDM perturbations
 - \circ Massless neutrino Universe $\delta^{m_
 u=0}_{
 m cdm} \propto a$
 - \circ Massive neutrino Universe $\delta^{m_
 u
 eq 0}_{
 m cdm} \propto a^{1-rac{3}{5}rac{\Omega_
 u}{\Omega_m}}$

19

Known unknowns (systematics, etc.)

 Galaxy bias P_{galaxy} = b² P_{matter} [Castorina et al. (2014); Vagnozzi, Brinckmann, Archidiacono, Freese, Gerbino, Lesgourgues, Sprenger, JCAP (2018)]

2. Non-linearities [Euclid Collaboration: Adamek et al., A&A (2023)]

Baryonic feedback [Spurio Mancini et al. (2023)]

Vagnozzi, Brinckmann, Archidiacono, Freese, Gerbino, Lesgourgues, Sprenger, JCAP (2018)

Modelling the unknowns

Redshift dependent cut-off in k:

Larger scales start behaving non-linearly later (i.e., at smaller z) with respect to smaller scales.

$$k_{nl}(z) \propto k_{nl}(0)(1+z)^{2/(2+n_s)}$$

$$l_{\max}^{zi} = k_{nl}(z) \times \overline{r}_{peak}^{zi}$$

Euclid weak lensing	only, improvei	ment wrt Planck
---------------------	----------------	-----------------

k_{\max}	$100\omega_b$	$\omega_{ m cdm}$	$ heta_s$	$\ln(10^{10}A_s)$	n_s	$ au_{\mathrm{reio}}$	$M_{\nu} [\mathrm{eV}]$
0.5 h/Mpc	0.77	0.27	0.97	0.94	0.72	0.96	0.50
1.0 h/Mpc	0.76	0.27	0.94	0.95	0.70	0.98	0.41
2.0 h/Mpc	0.76	0.25	0.97	0.94	0.65	0.97	0.36
$l_{\rm max} = 5000$	0.74	0.24	0.94	0.94	0.58	0.96	0.30
Planck only	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Neutrino mass constraints: the future

Euclid preparation: Sensitivity to neutrino parameters. Lead authors: Archidiacono & Lesgourgues

 $\Lambda \text{CDM} + \sum m_{\nu}$

Implementation of mock Euclid likelihoods in the MontePython software [Euclid: Validation of the MontePython forecasting tools, Casas et al. (including Archidiacono), (2023)]

Neutrino mass constraints: the future

Neutrino mass constraints: the future

Neutrino mass ordering

Constraints derived under the assumption $m_1=m_2=m_3$ (degenerate hierarchy, DH)

Neutrino Mass Hierarchy

Neutrino mass ordering

Neutrino mass: conclusions

• Euclid in combination with upcoming CMB surveys can achieve a 4σ detection of Σm_v even if $\Sigma m_v = 0.058 \text{ eV}$ (i.e., min. NH)

• Cosmology is not directly sensitive to the neutrino mass ordering, like DUNE, however if Σm_v = 0.058 eV, then future cosmological constraints can exclude IH at about 2σ

 Cosmology is more sensitive than current and planned β-decay experiments. Caveat: cosmology is model dependent, and it requires that systematic effects are under control. Complementarity: cosmology is not sensitive to the Dirac/Majorana nature, mixing angles.

Plan

- Neutrino mass
- Neutrino number and new light particles $N_{eff} = N_{eff}^{SM}(=3.044) + \Delta N_{eff}$

N_{eff} probes: CMB

A larger (thermalised) N_{eff} is not a solution to the "H₀ problem":

 H_0 = 67.4 \pm 0.5 km/s/Mpc (Planck)

 H_0 = 73.0 ± 1.0 km/s/Mpc (SH0ES) [Riess et al. (2022)]

- Phase shift of the CMB acoustic peaks
- Increase of Silk damping al large *l*

N_{eff} probes: P(k)

CMB (Planck + ACT) N_{eff} = 2.98 \pm 0.20 (95% CL)

CMB + DESI BAO [DESI Collaboration (2024)] N_{eff} = 3.10 ± 0.17 (95% CL)

Consistent with N_{eff} SM = 3.044

Bounds on new light particles (ΔN_{eff})

Euclid preparation: Sensitivity to neutrino parameters. Lead authors: Archidiacono & Lesgourgues

Note: Here the additional particles are assumed to be massless.

Bounds on new light particles (ΔN_{eff} , m_{eff}) The case of light sterile neutrinos

Planck TT, TE, EE+lensing+BAO:

 $\Delta N_{\text{eff}}~$ < 0.30 (95% CL)

m_{sterile} < 0.65 eV (95% CL)

Global fit of neutrino oscillation anomalies

Light sterile neutrinos with self-interations

Archidiacono, Gariazzo, Giunti, Hannestad, Tram, JCAP (2021)

Sterile neutrinos with self-interactions provide:

- a good fit to Planck CMB data
- a solution to the Hubble constant problem

Outlook: constraining vSI with Euclid

Mild preference for non-vanishing ν SI

Euclid will extend the range where we can test vSI

Outlook: constraining vSI with Euclid

Neutrino number and new light particles: conclusions

- Euclid in combination with future CMB surveys can exclude the existence of new light particles decoupling after the onset of QCD phase transition for any spin.
- Light sterile neutrinos, as hinted at by neutrino oscillation anomalies, are already excluded by Planck with high statistical significance. New neutrino selfinteractions provide an elegant way to accommodate light sterile neutrinos in cosmology and to solve the H₀ problem.
- Neutrino non-standard interactions: constraints from the lab and from astrophysics might exclude their existence