Nonlinear galaxy clustering in massive neutrino cosmologies

Francesco Verdiani SISSA

(PhD student in the Trieste LSS group)

Sestri Levante, 16/09/2024

Neutrino masses Neutrino oscillations indicate that this particles are massive: scale still unknown

for **NH**

for **IH**

UPPER from experiments (KATRIN)

 $m_{\nu,e} < 1.1 \,\mathrm{eV}$

COSMOLOGY:

Massive neutrinos: background cosmology

Massive neutrinos: matter perturbations Yet neutrinos are matter at late time, they are free-streaming. At the level of linear perturbations: suppression on small scales.

$$\frac{P_{\rm m}(k)}{P_{\rm m}(k, f_{\nu} = 0)} \sim 1 - 6f_{\rm h}$$

For $M_{\nu} = 60 \text{ meV}$, this is a $\sim 3\%$ effect!

Galaxy clustering in cosmologies with massive neutrinos

- Effects beyond linear power spectrum are tiny.
- Motivation: if not accounted for might introduce systematic biases
- Some potential subtleties still to be fully worked out

- I present two aspects:
 - Redshift-space distortions in M_{ν} cosmologies
 - Validation of the full EFT model with massive neutrinos

Example: bias with massive neutrinos

- Halos/galaxies are biased to
- But now there are two matter component: the total one (CDM+baryons+ ν) and the cold-only (CDM+baryons)
- Question: is it then $\delta_h = b_h$
- Method: check it in simulations. Outcome: $\delta_h = b_1 \delta_c + \dots$ better reproduces data

racers
$$\delta_h = b_1 \delta + \dots$$

$$_1\delta_m + \dots \text{ or } \delta_h = b_1\delta_c + \dots ?$$

[Castorina+14, Cosmology with massive neutrinos II: on the universality of the halo mass function and bias]

Halo velocity with massive neutrinos

- Another question: and for the velocity field?
- This is relevant, for cosmology with galaxy clustering, due to Redshift-space Distortions (RSDs)

$$\delta_{h,s} = b\delta + f\mu$$

- Is it $\Theta_h = \Theta_m$ or $\Theta_h = \Theta_c$?
- Very independent question to the density bias one. [Castorina+15, *Marulli*+11, *Villaescusa-Navarro*+17]

 $\Theta_{\mu}^{2}\Theta_{\mu}$ (with only one fluid $\Theta_{h} = \Theta = \delta$)

QUIJOTE & DEMNuni [Villaescusa-Navarro+19, Carbone+17]

Halo velocity with massive neutrinos Let's address it the same way: take simulations, and see which *ansatz* better recovers the growth rate.

The state of the art model for full-shape analysis of galaxy clustering.

- A. So far, the EFT model thoroughly validated on CDM only simulations.
- B. In principle there are [under study with Castorina, Redigolo, Salvioni] modifications to the theory due to M_{ν} . Are they negligible or not? [Noriega+22]
 - **Goal:** perform a realistic validation on mock galaxy catalogs, both for power spectrum and bispectrum
 - (E. Bellini ++, 2024)

EFT model with massive neutrinos

sancho galaxy mock Catalogs [M. Biagetti++]

Outcome:

- The EFT properly fits the galaxy mock P + B
- Model reaches $k_{max} = 0.18 h/Mpc$ for a cumulative volume of $25 (Gpc/h)^3$
- Need priors from the CMB to have a detection.

Forecasts for full shape analyses (EFT)

[*Manieri*+24, The Wide-field Spectroscopic **Telescope (WST) Science White Paper]**

- ongoing (4th gen)
- planned (5th gen)

With Euclid data foreseen a detection of at least ~ 2σ .

Will get to 3.5σ with next generation (like WST)!

350

Thanks

Halo velocity with massive neutrinos Let's address it the same way: take simulations, and see which *ansatz* better recovers the growth rate.

Halo velocity with massive neutrinos

