

Towards a full modelling of the 3PCF at the BAO scales

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Michele Moresco

Dipartimento di Fisica e Astronomia "Augusto Righi" Alma Mater Studiorum - Università di Bologna *michele.moresco@unibo.it*

N. Principi, K. Nagainis, M. Guidi (UniBo), A. Veropalumbo, A. Farina (INAF OABr, INFN-Genova), B. Granett, I Risso (INAF OABr)

in collaboration with

Guzzo et al. (2018)

Guzzo et al. (2018)

For a Gaussian Random Field, 2PCF (and/or Pk) would be enough (mean and variance)

… but the Universe is just not like that!

For a Gaussian Random Field, 2PCF (and/or Pk) would be enough (mean and variance)

… but the Universe is just not like that!

same 2-pt statistic, difference in the higher orders

Including higher-orders in the analysis is **fundamental for current and next-generation surveys** (e.g. Euclid, DESI), because it improves the cosmological constraints, breaks degenracies, and provides additional information, **but**...

Including higher-orders in the analysis is **fundamental for current and next-generation surveys** (e.g. Euclid, DESI), because it improves the cosmological constraints, breaks degenracies, and provides additional information, **but**...

both measuring and modelling it has a **high computational (and theoretical) cost**

Including higher-orders in the analysis is **fundamental for current and next-generation surveys** (e.g. Euclid, DESI), because it improves the cosmological constraints, breaks degenracies, and provides additional information, **but**...

both measuring and modelling it has a **high computational (and theoretical) cost**

Currently, several theoretical and analysis efforts are ongoing on this aspect. For the future, it will be crucial to:

- Be able to provide theoretical models more complete and significanly quicker
- Carefully assess the systematics involved and how to treat with those
- Provide new tools to exploit 3PCF and the combination of 2PCF+3PCF for current future surveys

Including higher-orders in the analysis is **fundamental for current and next-generation surveys** (e.g. Euclid, DESI), because it improves the cosmological constraints, breaks degenracies, and provides additional information, **but**...

both measuring and modelling it has a **high computational (and theoretical) cost**

Currently, several theoretical and analysis efforts are ongoing on this aspect. For the future, it will be crucial to:

- Be able to provide theoretical models more complete and significanly quicker
- Carefully assess the systematics involved and how to treat with those
- Provide new tools to exploit 3PCF and the combination of 2PCF+3PCF for current future surveys

Today, we report on:

- Study the **impact of interlopers** on the 3PCF (Master Thesis of **Nicola Principi**)
- Develop **emulator for the anisotropic 3PCF**, and **forecasts on the accuracy** of cosmological parameters **from the 3PCF** (Master Thesis of **Kristers Nagainis**)
- Analysis and cosmological constraints from the 2PCF+3PCF combination (see **M. Guidi**'s talk)

PRIN 2022 "Optimizing the extraction of cosmological information from Large Scale Structure analysis in view of the next large spectroscopic surveys" (2022NY2ZRS 001)

Probability of finding **pairs** and triplets of objects:

 $dP = n^2[1 + \xi(r)]dV_1dV_2$

Landy & Szalay (1993) =

$$
\xi(r) = \frac{DD - 2DR - RR}{RR}
$$

Probability of finding **pairs** and **triplets** of objects:

 $dP = n^2[1 + \xi(r)]dV_1dV_2$

 $dP = n^3[1 + \xi(r_{12}) + \xi(r_{13}) + \xi(r_{23}) + \zeta(r_{12}, r_{13}, r_{23})]$ $dV_1 dV_2 dV_3$

2PCF estimator *Landy & Szalay (1993)*

$$
\xi(r) = \frac{DD - 2DR - RR}{RR}
$$

3PCF estimator *Szapudi & Szalay (1998)*

$$
\zeta(r_{12}, r_{13}, r_{23}) = \frac{DDD - 3DDR + 3DRR - RRR}{RRR}
$$

Probability of finding **pairs** and **triplets** of objects:

 $dP = n^2[1 + \xi(r)]dV_1dV_2$

 $dP = n^3[1 + \xi(r_{12}) + \xi(r_{13}) + \xi(r_{23}) + \zeta(r_{12}, r_{13}, r_{23})]$ $dV_1 dV_2 dV_3$

2PCF estimator *Landy & Szalay (1993)* **3PCF estimator** *Szapudi & Szalay (1998)* = − 2 − 12, 13, ²³ = − 3 + 3 − connected 3PCF reduced 3PCF *Q*(*^r*12,*r*13,q) ⁼ ^z(*^r*12,*r*13,q) ^x(*^r*¹²)x(*^r*²³) ⁺ ^x(*^r*23)x(*^r*31) ⁺ ^x(*^r*31)x(*^r*¹²) ^z(*^r*12,*r*13,q) µ *b* 3 s8 4 µ *b* -1

Probability of finding **pairs** and **triplets** of objects:

 $dP = n^2[1 + \xi(r)]dV_1dV_2$

 $dP = n^3[1 + \xi(r_{12}) + \xi(r_{13}) + \xi(r_{23}) + \zeta(r_{12}, r_{13}, r_{23})]$ $dV_1 dV_2 dV_3$

2PCF estimator *Landy & Szalay (1993)* **3PCF estimator** *Szapudi & Szalay (1998)* = − 2 − 12, 13, ²³ = − 3 + 3 − connected 3PCF reduced 3PCF *Q*(*^r*12,*r*13,q) ⁼ ^z(*^r*12,*r*13,q) ^x(*^r*¹²)x(*^r*²³) ⁺ ^x(*^r*23)x(*^r*31) ⁺ ^x(*^r*31)x(*^r*¹²) ^z(*^r*12,*r*13,q) µ *b* 3 s8 4 µ *b* -1

Theoretical recent advances happening right now! Fast spherical harmonics decomposition estimator (Slepian et al, 2015), anisotropic z-space 3PCF (Slepian et al. 2018), estimate of different 3PCF covariance matrix (Veropalumbo et al. 2022), …

The BAO peak in the 3PCF

Moresco et al. (2021)

The BAO peak in the 3PCF

Moresco et al. (2021)

The BAO peak in the 3PCF

Impact on interlopers on the 3PCF

Effect of interlopers in the 3PCF analysis

Work by Nicola Principi

Aim: Assess the effect of interlopers on the 3PCF measurements, studying their impact on the derived parameters

Sample: application to the Euclid surveys, considering 2 different catalogs:

- Flagship 2: full octant (+ interlopers) \Rightarrow realistic catalog (Poissonian errors)
- Euclid Large Mocks: 1000 30deg-field catalogues from PINOCCHIO (+ interlopers) ⇒ covariance

New cross 3PCF estimators

Work by Nicola Principi

$$
\hat{\zeta}_{tot} = \sum_{i} f_i^3 \frac{R_i R_i R_i}{R_{tot} R_{tot} R_{tot}} \hat{\zeta}_i + 3 \left[\sum_{i \neq j, i < j} \left(f_i^2 f_j \frac{R_i R_i R_j}{R_{tot} R_{tot} R_{tot}} \hat{\zeta}_{iij} + f_i f_j^2 \frac{R_i R_j R_j}{R_{tot} R_{tot} R_{tot}} \hat{\zeta}_{ijj} \right) + 6 \sum_{i \neq j \neq k, i < j < k} f_i f_j f_k \frac{R_i R_j R_k}{R_{tot} R_{tot} R_{tot}} \hat{\zeta}_{ijk}.
$$

New cross 3PCF estimators

Work by Nicola Principi

New cross 3PCF estimators

Work by Nicola Principi

4 new classes and 19 new functions implemented in the CosmoBolognaLib suite

Michele Moresco Understanding the Galaxy/Matter Connection in the Era of Large Surveys, 16-17 September 2024

oloan

Autocorrelations and crosscorrelations

Work by Nicola Principi

Analysis on Flagship 2 catalog

Global effect: **damping of the signal**

Autocorrelations and crosscorrelations

Work by Nicola Principi

Analysis on Flagship 2 catalog

Autocorrelations and crosscorrelations

Work by Nicola Principi

Analysis on Flagship 2 catalog

Measurements of the 2PCF and 3PCF

Work by Nicola Principi

Analysis on Euclid Large Mocks

Constraints on both 2PCF (+ multipoles) and 3PCF (isotropic) + covariance

Measurements of the 2PCF and 3PCF

Work by Nicola Principi

Analysis on Euclid Large Mocks

Constraints on both 2PCF (+ multipoles) and 3PCF (isotropic) + covariance

Measurements of the 2PCF and 3PCF

Work by Nicola Principi

Analysis on Euclid Large Mocks

Constraints on both 2PCF (+ multipoles) and 3PCF (isotropic) + covariance

 0.8

 0.6

 0.4

 0.0

 -02

o.2
Correlation

Constraints from the 3PCF

Work by Nicola Principi

Analysis on Euclid Large Mocks

Offset in b_1 , but not in b_2 and b_t

Could be due to a simple offset between contaminated and pure 3PCF

(under investigation...)

Combining 2PCF and 3PCF

Work by Nicola Principi

Analysis on Euclid Large Mocks

Pure 2PCF vs 3PCF 0.9 \lt z \lt 1.1

Combining 2PCF and 3PCF significantly improves the constraints (see also M. Guidi's talk)

Emulating the anispotropic matter 3PCF *(and what about BAO?)*

Work by Kristers Nagainis

Aim: Develop an emulator for the anisotropic 3PCF of matter, to significantly speed up its computation and be able to provide forecasts on the accuracy of the constraints on cosmological parameters

ISOTROPIC

\n
$$
\oint_{\zeta_{\ell}} (r_1, r_2; \hat{r}_1 \cdot \hat{r}_2) = \sum_{\ell} \oint_{\zeta_{\ell}} (r_1, r_2) P_{\ell}(\hat{r}_1 \cdot \hat{r}_2)
$$
\n
$$
(-1)^{\ell} \int \frac{k_1^2 k_2^2 dk_1 dk_2}{(2\pi^2)^2} B_{s,\ell}(k_1, k_2) j_{\ell}(k_1 r_1) j_{\ell}(k_2 r_2),
$$
\nSlepian et al. (2017)

\nFrom 3PCF to 3PCF multiples

Work by Kristers Nagainis

Aim: Develop an emulator for the anisotropic 3PCF of matter, to significantly speed up its computation and be able to provide forecasts on the accuracy of the constraints on cosmological parameters

ISOTROPIC
\n
$$
\begin{aligned}\n\zeta_s(\eta_1, r_2; \hat{r}_1 \cdot \hat{r}_2) &= \sum_{\ell} \zeta_{\ell}(\eta_1, r_2) P_{\ell}(\hat{r}_1 \cdot \hat{r}_2) \\
\zeta_{\ell}(r_1, r_2) &= \\
(-1)^{\ell} \int \frac{k_1^2 k_2^2 dk_1 dk_2}{(2\pi^2)^2} B_{s,\ell}(k_1, k_2) j_{\ell}(k_1 r_1) j_{\ell}(k_2 r_2),\n\end{aligned}
$$
\n
\n
$$
\text{Stepian et al. (2017)}
$$
\n
\nFrom 3PCF to 3PCF multipoles

Work by Kristers Nagainis

Aim: Develop an emulator for the anisotropic 3PCF of matter, to significantly speed up its computation and be able to provide forecasts on the accuracy of the constraints on cosmological parameters

ISOTROPIC ANISOTROPIC

$$
\zeta_s(r_1, r_2; \hat{r}_1 \cdot \hat{r}_2) = \sum_{\ell} \zeta_{\ell}(r_1, r_2) P_{\ell}(\hat{r}_1 \cdot \hat{r}_2)
$$

$$
\zeta_{\ell}(r_1, r_2) =
$$

$$
(-1)^{\ell} \int \frac{k_1^2 k_2^2 dk_1 dk_2}{(2\pi^2)^2} B_{s,\ell}(k_1, k_2) j_{\ell}(k_1 r_1) j_{\ell}(k_2 r_2),
$$

Slepian et al. (2017)

$B_{\ell_1 \ell_2 L}(k_1, k_2) = (-i)^{\ell_1 + \ell_2} (4\pi)^2 \int dr_1 r_1^2 \int dr_2 r_2^2$ \times $j_{\ell_1}(k_1r_1)j_{\ell_2}(k_2r_2)\zeta_{\ell_1\ell_2L}(r_1,r_2)$ $\zeta_{\ell_1\ell_2L}(r_1,r_2)=i^{\ell_1+\ell_2}\int \frac{dk_1k_1^2}{2\pi^2}\int \frac{dk_2k_2^2}{2\pi^2}$ \times $i_{\ell_1}(r_1k_1)i_{\ell_2}(r_2k_2)B_{\ell_1\ell_2}I(k_1,k_2),$

Sugiyama et al. (2019)

Work by Kristers Nagainis

Aim: Develop an emulator for the anisotropic 3PCF of matter, to significantly speed up its computation and be able to provide forecasts on the accuracy of the constraints on cosmological parameters

Models created with Mod3l *(Farina et al. 2024)*

Work by Kristers Nagainis

Aim: Develop an emulator for the anisotropic 3PCF of matter, to significantly speed up its computation and be able to provide forecasts on the accuracy of the constraints on cosmological parameters

Models created with Mod3l (Farina et al. 2024)

Step 0: setup an emulator

Work by Kristers Nagainis

Current typical time for estimating 1 model: **30-40 minutes!**

Idea: Compute a large library of models for the anisotropic 3PCF for matter with Mod3l, and use CosmoPower (Spurio Mancini 2021) to train an emulator

Step 0: setup an emulator

Work by Kristers Nagainis

Current typical time for estimating 1 model: **30-40 minutes!**

Idea: Compute a large library of models for the anisotropic 3PCF for matter with Mod3l, and use CosmoPower (Spurio Mancini 2021) to train an emulator

Starting point: emulating P(k) (more control, easier, allows us to test configurations

Step 0: setup an emulator

Work by Kristers Nagainis

Current typical time for estimating 1 model: **30-40 minutes!**

Idea: Compute a large library of models for the anisotropic 3PCF for matter with Mod3l, and use CosmoPower (Spurio Mancini 2021) to train an emulator

Starting point: emulating P(k) (more control, easier, allows us to test configurations

Large grid of configurations tested: batch size, numer of layers, number of neurons, binning of P(k), range of cosmological parameters

Michele Moresco Understanding the Galaxy/Matter Connection in the Era of Large Surveys, 16-17 September 2024

Aim: reach sub-% accuracy on the reconstructed P(k)

Weights

Step 1: emulating the power spectrum

Work by Kristers Nagainis

4 cosmological parameters considered: $\Omega_{\sf m}$, h, $\Omega_{\sf b}$, n_s Emulated:

- $P_{\text{no wiggle}}(k)$
- $P(k) \longrightarrow$ ingredients for B(k)
- $P_{only \text{ wiggle}}(k)$

Step 1: emulating the power spectrum

Work by Kristers Nagainis

4 cosmological parameters considered: $\Omega_{\sf m}$, h, $\Omega_{\sf b}$, n_s Emulated:

- $P_{no \text{ wiggle}}(k)$
- $P(k)$ \longrightarrow ingredients for B(k)
- $P_{only \text{ wiggle}}(k)$

Thorough tests and otimization to get the best performances

Step 1: emulating the power spectrum

Work by Kristers Nagainis

- Sub-% accuracy reached in all configurations almost at all scales
- Emulated models implemented inside CosmoBolognaLib
- Significant gain in computational time

Step 2: emulating the 3PCF

Work by Kristers Nagainis

Similar approach to P(k), but required further implementations on CosmoPower

8 different emulators

Step 2: emulating the 3PCF

Work by Kristers Nagainis

 $r^3\zeta_{l_1,\,l_2,\,L}(r_{12},\,r_{13}),\,[(h^{-1}Mpc)^3]$

 $r^3\zeta_{l_1,l_2,\,l}(r_{12},r_{13}),[(h^{-1}Mpc)^3]$

Michele Moresco Understanding the Galaxy/Matter Connection in the Era of Large Surveys, 16-17 September 2024

3n128

 $v20$

4n64

 $v10$

b128

b512

base

 175

200

Step 3: BAO detectability

Work by Kristers Nagainis

Analysis to detect the configurations providing the maximum signal to identify the BAO features

Theoretical covariance (thanks to A. Veropalumbo)

Step 3: BAO detectability

Work by Kristers Nagainis

Step 4: Fisher forecasts

Work by Kristers Nagainis

Step 4: Fisher forecasts

Work by Kristers Nagainis

Promising results: **including the anisotropic component appears to improve the constraints**

Conclusions

- 3PCF as powerful statistical tool complementary to 2PCF
	- shape of structures depends on cosmological models
	- provide independent constraints on the bias and cosmological parameters
- first assessment of the impact of interlopers on 3PCF: bias which is crucial to be quantified and corrected
	- models to compensate for it under evaluation
	- combination of 2PCF and 3PCF crucial to break degeneracies and improve the constraints
- **For 3PCF cosmological applications and MCMC constraints it is fundamental to have ways to significantly speed up 3PCF models computation**:
	- created a framework for emulating P(k) and 3PCF, inside CosmoBolognaLib environment
	- emulated P(k) and anisotropic 3PCF models with sub-% accuracy
	- explored the configurations that maximize the BAO signal in the anisotropic 3PCF
	- Fisher forecasts on the accuracy of cosmological constraints from isotropic+anisotropic 3PCF
- **higher-order correlation function will be fundamental for future cosmological surveys** to maximize the extraction of cosmological information