Power spectrum and bispectrum joint fits for Stage-IV surveys

Chiara Moretti

Stage-IV spectroscopic surveys

Mapping the Universe over unprecedented volumes \rightarrow high precision measurements

- Need **fast** and **accurate** tools
- Robust validation on simulations/synthetic datavectors
- Modelling/understanding **systematics** is crucial (*both theoretical AND observational!*)

) () () ()

PBJ: A joint likelihood pipeline for galaxy power spectrum + bispectrum

- EFT model for power spectrum ightarrow **ported to Euclid likelihood CLOE**
 - FastPT for fast loop corrections
 - $\circ\,$ Emulators for P_L (or Boltzmann solver)
 - wiggle-nowiggle decomposition for infra-red resummation
- Tree level bispectrum
- Beyond Λ CDM: massive neutrinos, w_0 , w_a , γ , nDGP, dark scattering

PBJ: A joint likelihood pipeline for galaxy power spectrum + bispectrum

- Fully in python
- Extremely fast: P_{gg} evaluation in ~ 0.04 s, B_{ggg} in ~ 0.1 s \circ Euclid-like datavector: convergence in $\mathcal{O}(10)$ cpu hours
- Analytic marginalisation for nuisance parameters
- Option to run in fast mode when cosmology is fixed
- Several samplers: Metropolis-Hastings, affine invariant (emcee), nested (ultranest), ML powered (pocome, nautilus)

see also PyBird, CLASS-PT, Comet, Velocileptor, FOLPS ν , CLASS-OneLoop

Power spectrum model

EFTofLSS [Baumann+10, Carrasco+12, Pietroni+11]

11 nuisance parameters + cosmology: $\{b_1, b_2, b_{\mathcal{G}_2}, b_{\Gamma_3} c_0, c_2, c_4, c_{k^4}, \alpha_P, \epsilon_0, \epsilon_2\}$ x N redshift bins + $\{\omega_c, \omega_b, h, A_s, n_s, \dots\}$

Chiara Moretti -- SISSA

BOSS analysis: growth index and massive neutrinos

[Moretti+23, 2306.09275]

- constraints on γ + $M_{
 u}$ from full shape
- forecasts for Stage-IV surveys
- profile likelihood to mitigate projection/prior volume effects

BOSS analysis: Dark Scattering

Model: momentum exchange between DM and DE

BOSS analysis: [Carrilho+23, 2207.14784]

- constraints on w + A
- priors on nuisance params matter! projections

BOSS analysis: Dark Scattering

Model: momentum exchange between DM and DE

BOSS analysis: [Carrilho+23, 2207.14784]

- constraints on w + A
- priors on nuisance params matter! projections

Euclid: Updated forecasts

a.k.a. projection/prior volume effects

[Moretti+, in prep]

- Due to strong degeneracies in parameter space
- Already there for Λ CDM, become a real issue for extended models
- Still under investigation

Euclid: Updated forecasts

a.k.a. projection/prior volume effects

[Moretti+, in prep]

- fix priors \rightarrow trust simulations
- different model? bacco, VDG...
- profile likelihood (not Bayesian...) / Jeffrey's priors
- more data / probes → combine consistently

Euclid: Updated forecasts

a.k.a. projection/prior volume effects

[Moretti+, in prep]

Jeffrey's priors on *linear* parameters (equivalent to profile likelihood)

Work in progress

BAO joint analysis [with Elena Sarpa]

Combine full shape and post-reconstruction BAO

- Non-linearities are removed at the catalog level
- Modelling focused on BAO scales
- 3 nuisance parameters + 2 physical:
 - $\circ~\{\Sigma_{\parallel},\Sigma_{\perp},eta\}$ + $\{lpha_{\parallel},lpha_{\perp}\}$ + broadband polynomial
- less parameters \rightarrow tighter constraints (up to 30% improvement in configuration space fits)

Limited to Λ CDM!; Does not constrain cosmological params directly

Summary

- PBJ: a *fast* pipeline to analyse P+B from spectroscopic surveys
- Robust validation on simulations + applied to BOSS data
- Beyond- ΛCDM modeling: massive neutrinos, growth index, nDGP, dark scattering
- WIP: BAOs (Elena Sarpa, Cecilia Oliveri), massive neutrinos (Emilio Bellini, Francesco Verdiani), window convolution (Jacopo Salvalaggio, Yousry Elkhashab), Euclid forecasts (IST:nonlinear team), fits for beyond-ΛCDM (Guido d'Amico), interlopers (Matilde Barberi Squarotti, Sujeong Lee)

Special thanks to: Maria Tsedrik, Pedro Carrilho, Kevin Pardede

Chiara Moretti -- SISSA