Understanding Posterior Projection Effects With Normalizing Flows

Marco Raveri

Marco Raveri

What's the problem?

What's the problem?

What's the problem?

Marginalization over parameters

Marginalization

$$\mathcal{P}(heta_1|x) = \int \mathcal{P}(heta_1, heta_2|x) d heta_2.$$

Integrate out parameters that we are not looking at

This usually gives a puzzling picture of the distribution

Profiling over parameters

Profiling

$$\hat{\mathcal{P}}(\theta_1|x) \equiv \max_{\theta_2} \mathcal{P}(\theta_1, \theta_2|x).$$

Maximize over parameters that we are not looking at

Less puzzling but statistical interpretation harder

Bayesian/Frequentist disclaimer

Approaches diverge when interpreting what guarantees these distributions give about the **future**

Bayesian/Frequentist disclaimer

Approaches diverge when interpreting what guarantees these distributions give about the **future**

We fail to understand the structure of the distribution of the data we have...

Two pictures of the same distribution

Relationship between the two

Take the difference between the two

$$\begin{array}{ll} \log P(\theta_1) = \log \hat{P}(\theta_1) + \log \int \frac{P(\theta_1, \theta_2)}{\hat{P}(\theta_1)} \, d\theta_2 \\ & \text{Marginal} \end{array}$$

Assume Gaussianity in the marginalized direction

$$\log P(\theta_1) - \log \hat{P}(\theta_1) \le -\frac{1}{2} \log \det F_{\text{data}}^{(2)}(\theta_1) + \log V_2(\theta_1)$$

Marco Raveri

Relationship between the two

Take the difference between the two

$$\begin{array}{ll} \log P(\theta_1) = \log \hat{P}(\theta_1) + \log \int \frac{P(\theta_1, \theta_2)}{\hat{P}(\theta_1)} \, d\theta_2 \\ & \text{Marginal} \end{array}$$

Assume Gaussianity in the marginalized direction

$$\log P(\theta_1) - \log \hat{P}(\theta_1) \le -\frac{1}{2} \log \det F_{\text{data}}^{(2)}(\theta_1) + \log V_2(\theta_1)$$
Projection effects
Volume effects

Example of a volume effect

Example of a projection effect

Few lessons

Profiles are usually more conservative when we have flat portions of parameter space

Discontinuities are related to multimodality

Profiles are good as they preserve "height" (i.e. the top of a marginal is the top of the full distribution)

Marginals are good as they preserve probabilities (i.e. a marginal distribution is a distribution)

When the two differ: don't trust what you see!

Problem:

Marginals are easy to get, profiles require (lots of) high dimensional maximizations

High dimensional -> need Jacobian **Lots of** -> need fast evaluation of posterior

Solution:

Normalizing flow models of posterior distributions

Normalizing Flow Models

Learn the distribution as a mapping to a Gaussian

Tensiometer

Lots of engineering...

Code implementation available

~ pip install tensiometer

New version out today!

Shivam Pandey (Columbia U)

MR, Cyrille Doux and Shivam Pandey "Understanding posterior projection effects with normalizing flows" to appear on the arxiv soon

Marco Raveri

Tensiometer

Industry-standard for tension calculations

Figure 2. Difference distributions for GWB parameters between pairs of PTAs as computed by tensiometer. The contours show 68 and 95% of the distribution mass.

Adopted by PTA collaborations - NOT including MR...

From arXiv:2309.00693 "Comparing recent PTA results on the nanohertz stochastic gravitational wave background"

Marco Raveri

Toy example

Back to the DES example

The sigma8/omegam degeneracy is flatter than expected

Noise may move posteriors by more than what the marginal implies

Partially known – especially in extended models

What can we do about it?

Projection effects may arise because of two effects: 1- non-Gaussian likelihood 2- informative shaped (along the los) prior

N. 2 can be minimized by looking at best constrained parameters

Best constrained parameters maximize the difference between prior and posterior See Dacunha + (2112.05737)

What can we do about it?

- * In many cosmology examples, we see projection effects that complicate the interpretation of the posterior we have
- These effects arise because of either weak data constraints or genuinely non-Gaussian likelihoods
- A difference between marginal and profiled distributions is a warning sign -> if found understand what the data is measuring before looking at the parameters

- Systematic profiling was unfeasible/extremely computationally intensive until today
- * Tensiometer has tools to produce profiled triangles in minutes. And many tutorials to show you how to do it!
- * Have fun!