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What’s the problem?
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Marginalization over parameters

Marginalization

Integrate out parameters that we are not looking at

This usually gives a puzzling picture of the distribution



 
 

Marco Raveri 6

Profiling over parameters

Profiling

Maximize over parameters that we are not looking at

Less puzzling but statistical interpretation harder
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Bayesian/Frequentist disclaimer

Approaches diverge when interpreting what guarantees these 
distributions give about the future
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Bayesian/Frequentist disclaimer

Approaches diverge when interpreting what guarantees these 
distributions give about the future

We fail to understand the structure of the distribution of the 
data we have… 
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Two pictures of the same distribution

Marginal Profile

Mass along the line of sight Outline of the distribution
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Relationship between the two

Take the difference between the two

Assume Gaussianity in the marginalized direction

Marginal Profile
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Relationship between the two

Take the difference between the two

Assume Gaussianity in the marginalized direction
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Projection effects Volume effects
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Example of a volume effect
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Example of a projection effect
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Few lessons

Profiles are usually more conservative when we have flat portions 
of parameter space

Discontinuities are related to multimodality

Profiles are good as they preserve “height”  
(i.e. the top of a marginal is the top of the full distribution)

Marginals are good as they preserve probabilities 
(i.e. a marginal distribution is a distribution)

When the two differ: don’t trust what you see!
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Practical Problems and Solution

Problem:


Marginals are easy to get, profiles require (lots of) high 
dimensional maximizations


High dimensional -> need Jacobian

Lots of -> need fast evaluation of posterior


Solution:


Normalizing flow models of posterior distributions
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Normalizing Flow Models
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Learn the distribution as a mapping to a Gaussian
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Tensiometer

Lots of engineering…

Code implementation available

New version out today!

Cyrille Doux
(CNRS)

Shivam Pandey
(Columbia U)

MR, Cyrille Doux and Shivam Pandey “Understanding posterior projection effects with normalizing flows” to appear on the arxiv soon
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Tensiometer

From arXiv:2309.00693 “Comparing recent PTA results on the nanohertz stochastic gravitational wave background”

Industry-standard for tension calculations

Adopted by PTA collaborations - NOT including MR…
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Toy example

High (32D) dimensional 
Gaussian mixture

1D and 2D profiles in 
minutes

With an accurate flow 
model we can afford lots 

of maximizations
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Back to the DES example
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The sigma8/omegam 
degeneracy is flatter 

than expected

Noise may move 
posteriors by more than 

what the marginal 
implies

Partially known - 
especially in extended 

models
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What can we do about it?

Projection effects may arise because of two effects: 
1- non-Gaussian likelihood


2- informative shaped (along the los) prior

N. 2 can be minimized by looking at best constrained 
parameters

Best constrained parameters maximize the difference 
between prior and posterior 

See Dacunha + (2112.05737)
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What can we do about it?

Figure out best constrained 
parameters

Tensiometer has you covered

(See tutorial)

If marginal/profile agree believe 
those…



 
 

Marco Raveri 23

Conclusions

In many cosmology examples, we see projection effects 
that complicate the interpretation of the posterior we have


These effects arise because of either weak data constraints 
or genuinely non-Gaussian likelihoods


A difference between marginal and profiled distributions is 
a warning sign -> if found understand what the data is 
measuring before looking at the parameters
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Conclusions

Systemat ic prof i l ing was unfeas ib le/ext remely 
computationally intensive until today 


Tensiometer has tools to produce profiled triangles in 
minutes. And many tutorials to show you how to do it!


Have fun!


