

Controlling systematics in spectroscopic GC

P. Monaco, University of Trieste & INAF-OATs, INFN, ICSC/Spoke 3, IFPU

Astronomy & Astrophysics manuscript no. output September 5, 2024

Euclid Collaboration: P. Monaco^{1,2,3,4}, M. Y. Elkhashab, B. Granett, J. Salvalaggio, E. Sefusatti, C. Scarlata, B. Zabelle, G. Addison, M. Bethermin, S. Bruton, C. Carbone, S. De La Torre, S. Dusini, A. Eggemeier, G. Lavaux, S. Lee, K. Markovich, K. McCarthy, M. Moresco, F. Passalacqua, W. Percival, I. Risso, A. Sanchez, C. Sirignano, Y. Wang, et al.

(Affiliations can be found after the references)

September 5, 2024

P. Monaco, Understanding the Galaxy/Matter Connection in the Era of Large Surveys, Sestri Levante, September 2024

CESO 2024

Controlling systematics in spectroscopic GC

P. Monaco, University of Trieste & INAF-OATs, INFN, ICSC/Spoke 3, IFPU

Astronomy & Astrophysics manuscript no. output September 5, 2024

CESC

Euclid Preparation. TBD : Controlling care systematics in the Euclid spectroscopic g lary sample. I mactuations of survey

le th

Euclid Collaboration: P. Ionac ^{1,2}, ⁴** M. Y. Elkhashab, B. Granett, J. Salvalaggio, E. Sefusatti, C. Scarlata, B. Zabelle, G. roo, on, M. Jether hin, S. Bruton, C. Carbone, S. De La Torre, S. Dusini, A. Eggemeier, G. Lavaux, S. J. M. Warrch, K. Mcearthy, M. Moresco, F. Passalacqua, W. Percival, I. Risso, A. Sanchez, C. Sirignano, Y. Wang, et al.

(Affiliations can be found after the references)

September 5, 2024

The most prominent emission line of a star-forming galaxy is H α , detected in the NIR at z~1-2.

Euclid will be a slitless spectroscopic survey, spectra will be taken for all objects present in a photometric H<24 imaging survey.

It will detect H α (+[NII]) at 0.9<z<1.8.

No target preselection, no fiber collision!

Confusion will be limited using 4 orientations in a K-shaped configuration

The most prominent emission line of a star-forming galaxy is H α , detected in the NIR at z~1-2.

Euclid will be a slitless spectroscopic survey, spectra will be taken for all objects present in a photometric H<24 imaging survey.

It will detect H α (+[NII]) at 0.9<z<1.8.

No target preselection, no fiber collision!

Confusion will be limited using 4 orientations in a K-shaped configuration

circles denote detected H α emission lines

B. Granett, Vincent Le Brun, SGS team

The most prominent emission line of a star-forming galaxy is H α , detected in the NIR at z~1-2.

Euclid will be a slitless spectroscopic survey, spectra will be taken for all objects present in a photometric H<24 imaging survey.

It will detect H α (+[NII]) at 0.9<z<1.8.

No target preselection, no fiber collision!

Confusion will be limited using 4 orientations in a K-shaped configuration

circles denote detected Ha emission lines 90000 and fitted templates for rank 0 2.00e-17 1.50e-17 1.00e-17 5.00e-1 1.54e-3 -5.00e-18 -1.00e-17 λ_{obs} (Å -1.50e-17

B. Granett, Vincent Le Brun, SGS team

The most prominent emission line of a star-forming galaxy is H α , detected in the NIR at z~1-2.

Euclid will be a slitless spectroscopic survey, spectra will be taken for all objects present in a photometric H<24 imaging survey.

It will detect H α (+[NII]) at 0.9<z<1.8.

No target preselection, no fiber collision!

Confusion will be limited using 4 orientations in a K-shaped configuration

Construction of the random catalog

- take a galaxy from the deep field
- place it in a random sky position
- take the images of the four NISP dithers
 inject the source in the four images
- use a bypass of the pipeline to estimate its detection probability
- determine if the galaxy gets into the random

The random catalog is a **forward model** of completeness and purity

Formalism (ignore luminosity-dependent bias)

target galaxies: $f > f_0=2 \times 10^{-16} \text{ erg/s/cm}^2$

observed "good" galaxies: H α detected, z in a PDF with σ_z =0.002

 $\phi_{\text{local}}(f|\boldsymbol{x}) \simeq [1 + \delta_g(\boldsymbol{x})] \Phi(f, z),$

$$n_t(\boldsymbol{x}) := \int_{f_0}^{\infty} \phi_{\text{local}}(f|\boldsymbol{x}) \, df \, .$$

1

$$n_{og}(\mathbf{x}) = \int_{0}^{\infty} C(f, z, \{N_i\}) \phi_{\text{local}}(f|\mathbf{x}) df$$
$$\simeq [1 + \delta_g(\mathbf{x})] \int_{0}^{\infty} C(f, z, \{N_i\}) \Phi(f|z) df,$$

Redshift errors, interlopers, purity and completeness

$$n_o(\boldsymbol{x}_o) := n_{og}(\boldsymbol{x}) * P_z(z_o|z) + \Sigma_i n_{oi}(\boldsymbol{x}_o) + n_{on}(\boldsymbol{x}_o)$$

$$\bar{n}_{og} = \int_0^\infty \bar{C}(f,z) \,\Phi(f|z) \,df \,, \qquad \text{good}$$

redshift purity =
$$\frac{\bar{n}_{og}(z)}{\bar{n}_o(z)}$$
.

sample purity = $\frac{\bar{n}_{ot}(z)}{\bar{n}_{ot}(z)}$.

$$\bar{n}_{ot}(z) = \int_{f_0}^{\infty} \bar{C}(f, z) \Phi(f|z) df$$
. good & target

sample completeness
$$= \frac{\bar{n}_{ot}(z)}{\bar{n}_t(z)}$$
.

$$\bar{n}_t(z) = \int_{f_0}^{\infty} \Phi(f|z) \, df \, .$$

target

redshift efficacy = $\frac{\bar{n}_{og}(z)}{\bar{n}_t(z)}$.

Will Percival

$$C(f, z, \{N_i\}) := \int d^m \mathbf{p} P_{det}(f, z, \{N_i\} | \mathbf{p}) .$$

p: vector of galaxy properties

({N_i}: nuisance maps, see below)

Bypass (pypelid) and detection model

The dependence of detection probability P_{det} on galaxy and image properties can be compressed into a dependence on SNR of emission lines (detection model) Using a calibrator set from FastSpec+SPE simulations we estimate the error on detection model parameters

Ben Granett

Systematics entry points

going through the SGS pipeline and identifying all possible systematics, as

- angular systematics
- noise interlopers
- line interlopers
- plus other minor effects

mostly mitigated by

- the random
- the model

The random should represent errors in the photometry

systematic effect	entry	class	consequences	mitigation	impact	risk
	point			strategy		100000
fluctuation of photometric depth	MER	angular	loss of sources for SIR	random	low	low
+ photometric selection	+SEL		modulation of catalog	+photo errors		mild
under-deblending	MER	angular	loss of sources for SIR none miscentered sources		v. low	v. low
over-deblending	MER	noise int.	fake sources	random	low	low
persistence: spectro to photo	MER	noise int.	fake sources	random	mild	low
zodiacal light	astro	angular	increased background random		v. high	v. low
nearby galaxies	astro	angular	increased background random and confusion		low	low
MW extinction	astro	angular	decreased incoming flux	random (incomplete)	high	v. high
MW emission	astro	angular	contribution to background	random	v. low	v. low
flagged pixels (bad pixels, saturated stars, cosmic rays, persistence)	SIR	angular	degraded image quality	random	v. high	low
straylight	SIR	angular	increased noise	random	high	low
persistence: photo to spectro	SIR	noise int.	fake emission lines	random	mild	mild
persistence: spectro to photo, photo to photo spectro to spectro	SIR	angular + noise int.	biased decontamination	ed decontamination none		high
calibration of SIR variance	SIR	angular	modulation of random none		low	mild
wavelength calibration	SIR	AP-like	redshift bias none		v. low	v. low
confusion from foregrounds	SIR	angular + noise int.	increased noise in spectra potential interlopers	random	high	low
confusion from $z > 0.9$ sources	SIR	angular	correlated to signal	TBD		v. high
coaddition of dithers	SIR	angular noise int.	error propagation	random	mild	low
templates for spectral fit	SPE	AP-like	bias in redshift measure	no	low	low
star-galaxy separation	SPE	noise int.	spurious sources	random	mild	low
redshift uncertainty	SPE	theory	anisotropic smoothing	model	mild	low
line misidentification	SPE	line int.	wrong redshift	model		high
spectral reliability selection	SPE +SEL	noise int. + line int.	sub-optimal cleaning of interlopers	random	mild	low
photometric selection	SPE +SEL	noise int. + line int.	introducing photometric systematics	random +photo errors	high	high
galaxy properties	astro	_	marginalized over by model	no	none	none
intrinsic alignments	astro	theory	detection correlated with no tidal field		v. low	mild
sample variance in EDS	VMSP	radial	fluctuations in $\bar{n}(z)$	random +mocks	mild	low
sample variance in galaxy properties from EDS	VMSP	angular	uncertainty in detection probability	random +mocks	low	low
mapping of SNR to detection	VMSP	angular	uncertainty in bypass	random +mocks	low	low

KP-GC-2 papers

- angular systematics + mock catalogs Pierluigi Monaco
- angular systematics on the largest scales Guilhem Lavaux
- systematics from deep field Sean Bruton
- redshift interlopers, forecast of their impact Graeme Addison
- redshift interlopers, impact on 2-point CF using galaxy mocks Ilaria Risso
- redshift interlopers, impact on power spectrum using galaxy mocks Sujeong Lee
- impact of confusion on detection probability Francesca Passalacqua
- end-to-end analysis with parallel pipeline Kevin McCarthy

EuclidLargeMocks (3.38 Gpc/h with 6144³ particles)

euclid

30 degree cone (circle of 30° of radius!) survey footprint 1 mock: 2763 deg², a bit larger than DR1 5 mocks: ~13800 deg², a bit smaller than DR3 we use 50 mocks, averaging over 5 (so we have 10 realizations) we consider z in [1.1,1.3)

Gabriele Parimbelli

'/pix, 4200x4200 pix

ideal catalog

Emiliano Sefusatti

ling the Galaxy/Matter Connection in the Era of Large Surveys, Sestri Levante, September 2024

EuclidLargeMocks and (pre-launch) DR1

P. Monaco, Understanding the Galaxy/Matter Connection in the Era of Large Surveys, Sestri Levante, September 2024

Window function

 $\alpha n_r(\mathbf{x})$,

average density

Fit of PK of target galaxies

We remove luminosity-dependent bias For the theory we use 1-loop + VDG (comet) For an ideal mitigation, the convolution of the theory model with the window with systematics should agree with the measurement at the same level

Yousry Elkhashab,

Jacopo Salvalaggio, Emiliano Sefusatti, Alex Eggemeier, Benjamin Camacho

P. Monaco, Understanding the G

Randoms

Projected angular density contrast of random catalog with systematics

straylight

zodiacal

img noise

How the window function works

For an ideal mitigation, the convolution of the theory model with the window with systematics should agree with the measurement at the same level

$$\Delta \Delta P := \frac{\left[(P_{\rm i} - P_{\rm th,s}) - (P_{\rm t} - P_{\rm th,t}) \right]}{P_{\rm t}},$$

$$\Delta \Delta P := \frac{\left[(P_{\rm i} - P_{\rm th,s}) - (P_{\rm t} - P_{\rm th,t})\right]}{P_{\rm t}},$$

This is a strong validation test of all the pipeline: PK measurement, window measurement, mixing matrix, convolution, angular systematics...

calibration set

fit

 $S_c = 3.27$

1.0

Realistic mitigation

Perturb nuisance maps:

- exposure time: it is exact, perturbing it makes very little difference
- image noise: very little difference expected (see below)
- MW extinction (Planck 2013 vs Planck 2015 vs SFD)

Perturb calibration:

- assume that zero-point of NISP drifts between two visits of a calibration field
- assume an error in the detection model
- assume scatter in the detection model: very little difference

Signal-to-noise ratio S

Randoms

Density contrast of random with perturbed baseline systematics, using the original random as reference

Error in detection model is easy to recognise

Conclusions: fitting catalogs with systematics

Coming soon...

- Standard fluxes, not shuffled (luminosity-dependent bias)
- We fit four redshift bins: [0.9-1.1), [1.1,1.3), [1.3,1.5), [1.5,1.8]
- We fit 5 mocks at a time (~DR3 area), we average over 10 groups of 5 mocks
- We use an EFT model
- Each bin has independent nuisance (bias + shot noise + counterterms) parameters
- We consider ideal, realistic and ad-hoc mitigation
- The covariance matrix is computed from 1000 mocks with baseline systematics

Numerical covariance with systematics (little changes...)

Conclusions: fitting catalogs with systematics

Conclusions: fitting catalogs with systematics

Tabulated visibility mask

computed by processing all flagship galaxie: with fixed noise and exposure time, then binning them in flux, redshift and reddening. Other noise levels and exposure times are obtained by rescaling the SNR.

Bonnabelle Zabelle

Nuisance maps

model of NISP detector + pre-launch survey timeline + 30deg cone immersed in largest island in DR3

exposure time (# of dithers) 8

P. Monaco, Understanding the Galaxy/Matter Connection in the Era of Large Surveys, Sestri Levante, September 2024

Nuisance maps

case	zodiacal	straylight	detector	MW	exposure	detection	calibration
	light	100 100	noise	extinction	time	model	error
zodi	yes	no	no	no	4	standard	no
stray	no	yes	no	no	4	standard	no
noise	yes	yes	yes	no	4	standard	no
MWext	no	no	no	P13	4	standard	no
tiling	yes	no	no	no	map@z = 1.2	standard	no
baseline	yes	yes	yes	P13	map@z = 1.2	standard	no
calib. 2%	yes	yes	yes	P13	map@z = 1.2	standard	2%
calib. 10%	yes	yes	yes	P13	map@z = 1.2	standard	10%
MWext P15	no	no	no	P15	- 4	standard	no
MWext SFD	no	no	no	SFD	4	standard	no
detmodel1	yes	yes	yes	P13	map@z = 1.2	$S_0 = 3.27$	no
detmodel2	yes	yes	yes	P13	map@z = 1.2	$S_0 = 4.11$	no
detmodel3	yes	yes	yes	P13	map@z = 1.2	$\beta = 3.73$	no
detmodel4	yes	yes	yes	P13	map@z = 1.2	$\beta = 6.23$	no