EW physics at the LHC in 2010/2011

Mauro Moretti

Dept. of Phys. and INFN Ferrara

M. Moretti (Dept. of Phys. and INFN Ferrara)

• Drell-Yan at LHC 14 (7) TeV and Tevatron

• $t\bar{t}$

- Higgs production and detection
- W,Z in weak boson fusion
- W W, WZ production

- Assumption: 500 pb^{-1} at 7 TeV in the centre of mass (2010 and 2011, a bit pessimistic now the goal is 1 fb^{-1})
- basically no public study at 7 TeV
- anything with a cross section smaller than 10fb neglected
- (several plots produced just for the seminar... handle with care)
- all presented results for 7 TeV are partonic LO (differential) cross sections

Drell-Yan

- LHC standard candle
- *M_W* crucial for EW precision test
- NLO and NNLO QCD correction known (NLO implemented in a shower montecarlo)
- NNLL QCD correction known
- residual QCD 1-2 % (smaller on shapes)
- PDF uncertainties (of experimental origin) 5-6 % (substantially smaller on shapes)
- At high invariant dilepton mass $M_{ll'}$ sizable EW corrections.
- $\sigma_W = 16$ nb (LHC_7) , 36nb (LHC_{14}) , 4.2nb (Tevatron) (no cut on leptons)
- $\sigma_Z = 8.2$ nb (LHC_7) , 15.4nb (LHC_{14}) , 2.6nb (Tevatron) (no cut on leptons)

Drell-Yan: PDF (experimental) uncertainties.

Figure: CTEQ61 PDFs uncertainties for W rapidity and muon pseudorapidity (upper plots), and for the W transverse mass and muon transverse momentum (lower plots). LHC₁₄, G. Balossini et al. JHEP:013, 2010

M. Moretti (Dept. of Phys. and INFN Ferrara)

Roma 11/03/10 5 / 22

Drell-Yan: theoretical PQCD uncertainties.

Figure: The *W* transverse mass (left plot) and muon transverse momentum (right plot) distributions, according to the QCD predictions of ALPGEN, MC@NLO and ResBos. In the lower panel the absolute deviations of each code w.r.t. ResBos are shown. G. Balossini et al. JHEP:013, 2010

Drell-Yan: EW Sudakov logs

- Very high p_T fermions can emit "soft/collinear" W and Z bosons.
- This emissions are logaritmically enhanced: Sudakow EW logs.
- initial state is not an isoweak singlet: KLN cancellation only partial
 ⇒ possible large EW corrections
- + EW corrections $\simeq 1$ % around Z, W peak, $\simeq 20$ % at high invariant dilepton mass $M_{ll'}$

Figure: Transverse mass (left plot) and lepton transverse momentum (right plot) distributions in the high $M_{\perp W}$ tails, at the LHC₁₄₇ JHEP:013, 2010 \equiv

M. Moretti (Dept. of Phys. and INFN Ferrara)

Drell Yan: $M_{ll'}$ reach

Figure: DY cross section as a function of a cut on transverse "W" mass (left) and "Z" mass (right). No cut on leptons. Muon and electron summed

small cross section hard to detect \sim 10-20 % effects

- $\sigma_{t\bar{t}} = 74$ pb (*LHC*₇), 433pb (*LHC*₁₄), 5.1pb (*Tevatron*). N.B. LO calculation, K factor ~ $1.5 \div 2$
- m_t important for EW precision physics N.B. pole mass, \overline{MS} mass or any pertubatively well defined quantity should be measured
- verify V A couplings of t, W and b
 - requires the measurment of decay products (jets) angular correlations.
 - **2** Challenging but measurments already performed at TEVATRON.

Higgs production

Figure: Higgs boson production: gluon fusion (upper left), associate $t\bar{t}H$ production (upper right), associate VH production (lower left), Weak Boson Fusion (lower right)

Higgs production: gluon fusion

Figure: Cross Section for higgs boson production in gluon fusion channel as a function of higgs mass

LHC₁₄: $\sigma(m_H = 120) = 21$ pb, $\sigma(m_H = 200) = 8.3$ pb; ~ 1/4 Tevatron: $\sigma(m_H = 120) = 0.31$ pb, $\sigma(m_H = 200) = 0.056$ pb; ~ 20

Higgs production: gluon fusion II

- $\sim 500 \ \mathrm{pb^{-1}} \Rightarrow 1000 \div 3000$ higgs bosons
- $H \rightarrow b\bar{b}$ dominant channel for light ($m_H < 150$) GeV but large $b\bar{b}$ QCD background hopeless
- *H* → *WW*(*W**), small branching ratio (< 5% in four lepton channel, hard to detect in other channels for large Drell-Yan, QCD background). Need to reject *tt* background and *WW* background. Challenging
 - 1 $m_H > 150 \text{ GeV} \Rightarrow \sigma < 3 \text{ pb}, 20 \div 60 \text{ events } (500 \text{ pb}^{-1}, \text{B.R.} < 5\%)$ before acceptance cuts and with 100% efficency
 - 2 $\sigma_{\bar{t}t} \simeq 70$ pb (1 and 5 pb rejecting events with at least one bottom with $p_T > 20$ and 30 GeV respectivley.)
 - $\Im \sigma_{WW} \simeq 15 \text{pb}$
 - Best prospects from leptons angular correlation, but small number of events ...
- $H \rightarrow \gamma \gamma$, small branching: $2 \cdot 10^{-3}$ negligible rate ($\neq 0 \Rightarrow$ BSM)
- $H \rightarrow ZZ \rightarrow 4$ leptons small branching: $< 10^{-3}$ negligible rate

Higgs production: weak boson fusion (VBF) channel

Figure: Cross Section for higgs boson production in Weak boson fusion channel, as a function of higgs mass. $gg \rightarrow Hjj$ not included.

LHC₁₄: $\sigma(m_H = 120) = 2.5$ pb, $\sigma(m_H = 200) = 1.8$ pb; ~ 1/2 Tevatron: $\sigma(m_H = 120) = 0.17$ pb, $\sigma(m_H = 200) = 0.060$ pb; ~ 7

- Mild dependence on higgs mass
- $350 \div 500$ events (500 pb⁻¹)
- Low higgs mass (< 150) major decay mode $b\bar{b}$, plagued by a very large QCD background . Other channels: negligible
- High higgs mass (> 150), major decay mode $WW(W^*)$.
 - **1** cleanest channel: $WW(W^*) \rightarrow ll' \nu_l \nu_{l'}$. B.R. ~ 5%
 - 2 large $t\bar{t}$ background \Rightarrow need to exploit VBF feature: high dijet invariant mass, jet veto.
 - 3 lepton angular correlation important, but small number of events 4 Challenging, but S/B > 1 might be achievable
- $WW(W^*) \rightarrow l\nu_l qq'$. B.R. $\sim 30\%$, huge Drell-Yan background

A (1) > A (2) > A (2) > A

Higgs production: weak boson fusion (VBF) channel III

Figure: Cross Section for higgs boson production in weak boson fusion channel as a function of dijet m_{jj} mass. Left: differential cross section; Right: cross section for $m_{jj} > m_0$. Plots: hjj, dashes $t\bar{t}$

Higgs production: associate WH production

Figure: Cross Section for associate W and higgs boson production as a function of higgs mass

LHC₁₄: $\sigma(m_H = 120) = 0.36$ pb, $\sigma(m_H = 200) = 0.10$ pb; ~ 1 Tevatron: $\sigma(m_H = 120) = 0.096$ pb, $\sigma(m_H = 200) = 0.015$ pb; ~ 3

- At most $75 \div 150$ events for light higgs $m_H < 150$ GeV
- only chance $H \rightarrow \overline{b}b$, $W \rightarrow l\nu_l$: branching ratio, b tagging acceptance: at least a factor 10 reduction
- large $\bar{t}t$ background

1 need to veto events: an extra hadronic or leptonic W is produced **2** need to exploit the invariant $b\bar{b}$ mass

- $Wb\bar{b} \ 0.4pb$, manageable.
- Very Challenging, it might be worth trying...

Vector boson production in WBF

Figure: W boson production in Weak Boson Fusion

W production in weak boson fusion

Pure EW contribution to Wjj production important:

- 1 Anomalous gauge bosons self couplings.
- 2 Check of WBF higgs production

 $\sigma \sim 16 {\rm pb},$ but background 10^2 larger, standard WBF cuts non sufficient.

Figure: Cross Section for associate Wjj production as a function of dijet m_{jj} invariant mass. Fancy Box: pure EW contribution ($\alpha_S = 0$). Crosses: Drell Yan.

W pair production

Figure: W pair production

- Relevant for the study of gauge bosons self couplings
 - 1 sensitivity to anomalous couplings grows like m^2_{WW}/m^2_W up to cut-off scale
- $\sigma \sim 16$ pb ($m_H = 120$); ~ 8000 events for 500 pb⁻¹
- $WW \rightarrow \rightarrow ll' \nu_l \nu_{l'}$, cleaner, $B.R. \sim 5\%$
 - 1 large $t\bar{t}$ background 2 vetoing extra jets with $p_T > 30(20)$ GeV $\sigma_{t\bar{t}} \rightarrow 34(17)$ pb 3 m_{WW} steeper for $t\bar{t}$ 4 LEP has collected ~ 10000 W pair, but $M_{WW} < 210$ GeV 5 Most Tevatron events nearly at thresholds 6 room to be competitive at high (~ $600 \div 800$ GeV) m_{WW}
- $WW \rightarrow l\nu_l qq'$. $B.R. \sim 30\%$, huge Drell-Yan background,

< 口 > < 同 > < 回 > < 回 > < 回 > <

W pair production II

Figure: Cross Section for associate W pair production as a function of M_{WW} (upper left) and as a function of a cut $M_{WW} > M_0$. Fancy Box: LHC₇, Crosses: LHC₁₄, Boxes: Tevatron, Diamonds: $t\bar{t}$