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Why don't we use ABCD method?

g
Topological Trigger Ya
® N, g = 1 = almost no loose photons! q "
o |p)| > 50GeV —-
o |pTiss| > 70 GeV
o mr > 80GeV K
g
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Why don't we use ABCD method?

isolation

DIE
()

S

tightness

Problem: we don't have loose photons
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Relative isolation variables

Problem: We can't use loose photons, because our trigger selects only
Tight Photons.

Solution: define Non-Isol Region with cuts on relative isolation variables, in
tracker and calorimeter.

track20
rel PT

ISOItrack = p'y
T

e ES40 — 2450

calo — Y

PT

isol
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Non-Isolated Region

We first based this study on Monte Carlo simulations, including dijets and
v+jets.

We want to find the best Non-Isolated Region, i.e. the region richest in
jet faking photons.
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This Non-Isol Region will be used to estimate fake factor f.

isol
f = NJ"Y

- Nﬂyon—iso/ tight

where

Nﬁ"’ is the number of jet faking photons in the Isolated Region
IVJ-”W"”_"SO' is the number of jet faking photons in the Non-Isolated Region
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Purity

We also need to take care of true photons in the Non-Isolated Region: this
fraction is given by purity P.

non—isol
P= N

(N’?on—isol + er’lyon—isol ) tight

i.e. the fraction of true photons in the Non-Isolated Region.

f and P will be used to estimate the number of jet faking photons in the
Signal Region.

In this study the quantity P’ was analized instead of P:

non— isol

/ N'y
P=——
Non— isol

JY

This choice doesn't affect the study, because minimizing P’ means minimizing P:
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Color map - Fake and true photons

Calo relative isolation vs track relative isolation
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Figure 2: True photons distribution

Figure 1: Jet faking photons distribution
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Fake factor and purity

Calo relative isolation vs track relative isolation

Calo_vs_track_trueph

Calo_vs_track_fakeph
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Figure 3: Fake factors method sketch

We would like to have P’ as small as possible, and at the same time f
reasonably small: few fake photons in the Isolated Region and few true

photons in the Non-Isolated Region.
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Which photons are "true" and which are "fake"?

True/Fake “ MC Truth Classifier Type

True IsoPhotons 14

NonlsoPhotons 15
UnknownPhotons 13 Fragmentation photons

Fake BkgPhotons 16

everything else that is
not y neither e

Fragmentation photons are photons emerging from parton showers. The
photons we are looking for, from H — 4, are much more similar to
direct photons.
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Which photons are "true" and which are "fake"?

q y 1 9
direct
fragmentation
g g 9 1

Fragmentation photons are in any case prompt photons so in inclusive
photon analyses they are considered part of the signal"
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Figure of merit

The first approach consisted in defining a figure of merit M to elect the
best Non-isolated Region.

= (2 s (6% 47

error on the estimation of
the number of fake photons in SR

error on the purity
estimation

error on the fake factor
estimation
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Search for a Non-Isolated Region

Calo_vs_track_ratio

q
T

(Ef'°‘°-2450) /p.

Isolated Region
Fixed Cut Tight

isol™ . < 0.05

track

isol™ < 0.022

Figure 4: Search for a Non-Isolated Region ortogonal to the
Isolated Region
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Search for a Non-Isolated Region

The best Non-Isolated Region is defined by:

e ESM0 — 2450

calo — Yy
Pt

isol > 0.022

track20

el _ PT
v Iso,track - Y
Pt

Fake factor and purity in this Non-Isolated Region are:

f=0.83+£0.10

P =10.0864761
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Elected Non-Isolated Region
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Figure 5: Pseudo-purity P’ in fine bins of relative isolation in tracker and calo
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Elected Non-Isolated Region

We then abandoned relative isolation in the tracker: it is not recommended
as working point.
This doesn’t affect our choice for the Non-Isolated Region.

Comparison for h_caloisolrel -eta_all, pt_all, any isol
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Figure 6: Relative isolation in calo for tight photons MC.
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Should we trust f and P from Monte Carlo?

Isolation is typically not well modelled by MC for jet faking photons.

We need to check our results on data.
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Loose photons

How to get jet faking photons in data?

We have different possibile ID selection:
o loose, if they satisfy loose criteria but not the tight ones;

@ looseb, if they satisfy the loose criteria and pass tight cuts on all
egamma shower shapes of HCAL and ECAL Middle layer;

@ loose4, if they are loose5 and pass tight cuts on Wz shower shape
of the ECAL Strips.
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Loose photons
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Figure 7: Variables describing shower shapes, energy ratios and width of the
energy deposit
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Loose photons
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Figure 8: Variables describing shower shapes, energy ratios and width of the
energy deposit (loose5)
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Loose photo

LOOSE4
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Loose photons

Larger statistic, lower true photons contamination

>
>

&
<

Lower statistic, larger true photons contamination
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Isolation comparison in MC: tight, loose, loose4, looseb

Isolation for tight, loose, loose4 and loose5 fake photons in MC is different

— tight
loose
loose4

loose5

0.07

0.06

0.05

0.04

0.03

0.02

0.01

PRSP T R R

05 1 1, 2
(E:_"$°'°—2450)Ip_r

=

—‘III\|IIII‘\IlllHIIlII\IlIIIIlIIIIlI

0

n

Figure 10: MC isolation for fake photons with different ID
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Isolation comparison (fake)y in DATA: loose, loose4, loose5

Isolation for loose, loose4 and loose5 photons in DATA is different

loose

loose4

loose5
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Figure 11: DATA isolation for (fake) photons with different ID
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Isolation comparison for loose fake v: MC and data

MC and DATA isolations for a same ID are different
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Figure 12: Calo isolation in MC and DATA for loose photons
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Isolation comparison for looseb fake v: MC and data

MC and DATA isolations for a same ID are different
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Figure 13: Calo isolation in MC and DATA for loose5 photons
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Isolation comparison for loose4 fake v: MC and data

MC and DATA isolations for a same ID are different
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Figure 14: Calo isolation in MC and DATA for loose4 photons
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Extrapolation L->T

We would like to calculate fake factors using tight fake photons in data, to
check our results obtained with MC.

Problem: In data, we cannot know which tight photons are true and which
fake.

Solution: We can try to extrapolate the tight fake photons distribution in
data from the loose photons distribution in data, assuming that:

@ loose photons in data are mostly fake;

@ the transformation that links tight and loose distributions in MC is
"somehow" related to the one that links tight and loose in data.
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Extrapolation L->T
L>T

"> T
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Figure 15: L —T transformation
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Step 1: get L->T transformation from MC

Let's assume that tight X¥C and loose X[VIC distributions in MC are linked
by an affine transformation, the easiest transformation to reproduce mean
and standard deviation of the start distribution:

X!,\—/IC =a+ bX[V’C

We want to find a, b such that:

MC MC UI\T/’C MC MC 1{
Xt =T+ e OO )
O'L /
SO ‘
_ MC 9T McC
a=Hr T mcHt
L
b . O'-IMC isolation
- —MC
oL
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Step 1: get L->T transformation from MC

Let's assume:
@ the scale factor b stays the same in MC and data;

o the offset a in data should depend on 2% 594t which is known,
and on u‘;?ta, which is unknown. So we assume the shift of the
average going from loose to tight is proportional to the rms in both

data and MC.

ut_jrata _ ugata _u¥
Uanata -
data __ , data g
W = n e
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Step 2: apply L->T transformation to DATA

It's all set, we can now apply the transformation to DATA:

d d o mc  mcy, OT . d d

ata ata ata ata

PP =pl+ et =) + e (7T = u™?)
I o1

— We obtain tight fake photons distributions in DATA.
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Step 3: obtained distributions

loose -->tight
0.045 loose5 -->tight

0.04 I —— loose4 -->tight

0.035 .
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isolation

Figure 16: Distributions of tight fake photons (DATA) isolation, extrapolated
from loose (DATA)
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Data and Monte Carlo comparison

Problem: we need to introduce a trigger to be able to compare data and
Monte Carlo.

Solution: Ok, but which one?

Analysis Trigger

o N ighe = 1 Leptonic Trigger MET Trigger
o |5} > 50 GeV © Nep=1or Ny =2 o

o |p7| > 70 GeV o Ny=lorN,=2  ©°IPF™|>006V
o mt > 80GeV

Giulia Maineri

Studying jet faking photons

University of Milan 34 /57



Validation on looseb

dat. dat. MC MC
[0 i A U il

data - MC
o or

Let's validate our hypothesis on loose5 photons, which we can compare in
data and MC assuming they are mostly fake photons.
We introduce a factor R; let's see when R is close to 1.

data data MC MC
Pis” —HL— _ pHis” — HL

data MC
or oL
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Pseudorapidity binning is chosen considering the detector geometry:

etabin00 represents the inclusive region;

etabin01: [0;0.6], the upper limit n = 0.6 is the point after which the
material in front of ECAL increases a lot;

etabin02: [0.6;1.37], the upper limit is defined by the beginning of the
crack region;

etabin03: [1.37;1.52], corresponds to the crack region;

etabin04: [1.52;1.81], the upper limit is the point where the
presampler ends;

etabin05: [1.81;2.37].
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Transverse momentum binning is chosen as follows:
@ pthin00 represents the inclusive region;

ptbin01: [25, 35]GeV;

ptbin02: [35, 45]GeV;

ptbin03: [45,55]GeV;

ptbin04: [55, 65]GeV;

ptbin05: [65, 75]GeV;

ptbin06: [75,100]GeV;

ptbin07: [100, 150]GeV;

ptbin08: [150, 250]GeV;
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Analysis trigger

R_trigger_analisi

iptbin

6
ietabin

Figure 17: R, analysis trigger
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Leptonic trigger

R_trigger_lept

iptbin

4 5 6
ietabin

Figure 18: R, leptonic trigger
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MET trigger

iptbin

Giulia Maineri

R_trigger_met
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Validation on looseb

Let's do the same validation using median and width, two indicators less
sensitive to outliers.

data data MC MC
data - MC
Wi Wi

where med is the median and w is calculated as:

16% 84%

isolation
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Analysis trigger

R_median_trigger_analisi

iptbin

6.96774

0 1 2 3 4 5 6
ietabin

Figure 20: R, analysis trigger
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Leptonic trigger

R_median_trigger_lept

iptbin

6
ietabin

Figure 21: R, leptonic trigger
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MET trigger

iptbin

R_median_trigger_met

1 0.9375

o -

111345

1.10526

1.14796

1.41176

ietabin

Figure 22: R, MET trigger
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Validation on looseb

Problem: R is very unstable. It is not possible to perform the extrapolation
in an exclusive regions in pr,17.

Solution: Let's be either inclusive in pr or in 7.
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R comparison for different trigger, inclusive in 7

R_trigger_lept R_trigger_analysis Le pto n i C

Piemp Ttemp
3

EEEEE

i e Si i uh ot Trigger
" "t Mean: 0.74
" " Spread: 0.18

04l 0al-
02~ 02 x
i L | 1l Ll I L C I L I L L L L
0 05 06 07 05 05 T 8707 o5 0 08 o8 1 106 1
R R

R_trigger_met . . .
£ ==+ MET Trigger Analysis Trigger

T Mean: 0.94 Mean: 0.87
Spread: 0.14 Spread: 0.14

| v ¢

L L I I I I
7 075 08 08 08 09 1 1 11
3

Giulia Maineri Studying jet faking photons University of Milan 46 /57



R comparison for different trigger, median and width,

inclusive in n

median_trigger_lept_etabin0 median_trigger_analysis_etabin0 L e to n i C
Titemp itemp p
o Entries & = Entries G
E Mean 06628 L Mean 1004 .
ok Sibey 03961 r Sibes 02011 Tngger
16F- o8- .
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12 06— . d h O 3
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08 04—
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04 02—
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I I | | | I | I I I 0 I I I
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n distribution, MET trigger
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Figure 23: Loose photons Figure 24: Tight photons

— good agreement
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n distribution, analysis trigger
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Figure 25: Loose photons Figure 26: Tight photons

— good agreement
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R comparison for different trigger, inclusive in pr
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R comparison for different trigger, median and width,

inclusive in pr
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pr distribution, leptonic trigger
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Figure 27: Loose photons Figure 28: Tight photons

— bad agreement ¥
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pr distribution, analysis trigger
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Figure 29: Loose photons
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Figure 30: Tight photons
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pr distribution, MET trigger
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Figure 31: Loose photons Figure 32: Tight photons

— bad agreement ¥
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Elected trigger

We are left with these possibilities:

MET Trigger  Analysis Trigger = MET Trigger Analysis Trigger

Mean: 0.94 Mean: 0.87 Median: 0.81 Median: 1.1
Spread: 0.14 Spread: 0.14 Width: 0.15 Width: 0.26
inclusive in n inclusive in n inclusive in n inclusive in n
mean, sigma mean, sigma median, width median, width
Analysis Trigger Analysis Trigger

Mean: 0.94 Median: 0.82

Spread: 0.07 Width: 0.08

inclusive in pr inclusive in p1

mean, sigma median, width
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Elected trigger

We are left with these possibilities:

MET Trigger  Analysis Trigger
Mean: 0.94 Mean: 0.87
Spread: 0.14 Spread: 0.14

inclusive in 7
mean, sigma

inclusive in 7
mean, sigma

Analysis Trigger
Mean: 0.94
Spread: 0.07

inclusive in pr
mean, sigma

Giulia Maineri

Studying jet faking photons

MET Trigger | Analysis Trigger
Median: 0.81 Median: 1.1
Width: 0.15 Width: 0.26
inclusive in 5 inclusive in 7
median, width median, width

Analysis Trigger
Median: 0.82
Width: 0.08
inclusive in pr
median, width
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Conclusions and next steps

Summary

@ We presented this new method to estimate the jet faking photons
background based on extrapolation of fake tight photons
distributions in data from loose photons distributions.

@ We tried to validate the method comparing loose5 distribution with
the extrapolated one.

@ Ratio R in exclusive regions in 7, pr was found to suffer from
fluctuations, hence the extrapolation should be done in a region
inclusive in n or pr only;

o Different triggers were explored in order to have R ~ 1 and a small
spread in either 1 or p7: the two best options is Analysis Trigger
inclusive in pr, using as indicators median and width.
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Conclusions and next steps

Next steps

o Extrapolate fake tight photons
isolation distribution:

o Calculate fake factors;

o0isE i il
@ How to treat fake factors oo4~ f‘\ so
uncertainties: need to °::§: 0
propagate mean and rms errors, 0_;252 f tght
envelope method? i3 {‘ |
e Calculate purity from the oo f 1
extrapolated distribution of tight = °¢ ) ’k | -
fake photons in DATA: TS e T

normalizing the tail and
subtracting;
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