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Why don’t we use ABCD method?

Topological Trigger
Nγtight = 1 =⇒ almost no loose photons!
|p⃗γT | > 50 GeV
|p⃗miss

T | > 70 GeV
mT > 80 GeV
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Why don’t we use ABCD method?
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Relative isolation variables

Problem: We can’t use loose photons, because our trigger selects only
Tight Photons.

Solution: define Non-Isol Region with cuts on relative isolation variables, in
tracker and calorimeter.

isol reltrack =
ptrack20
T

pγT

isol relcalo =
E calo40
T − 2450

pγT
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Non-Isolated Region

We first based this study on Monte Carlo simulations, including dijets and
γ+jets.

We want to find the best Non-Isolated Region, i.e. the region richest in
jet faking photons.
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Fake factor

This Non-Isol Region will be used to estimate fake factor f .

f =
( N isol

jγ

Nnon−isol
jγ

)
tight

where
N isol
jγ is the number of jet faking photons in the Isolated Region

Nnon−isol
jγ is the number of jet faking photons in the Non-Isolated Region
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Purity

We also need to take care of true photons in the Non-Isolated Region: this
fraction is given by purity P .

P =
( Nnon−isol

γ

Nnon−isol
γ + Nnon−isol

jγ

)
tight

i.e. the fraction of true photons in the Non-Isolated Region.

f and P will be used to estimate the number of jet faking photons in the
Signal Region.
In this study the quantity P′ was analized instead of P:

P′ =
Nnon−isol
γ

Nnon−isol
jγ

This choice doesn’t affect the study, because minimizing P′ means minimizing P:

1

P
= 1 +

1

P′
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Color map - Fake and true photons

Calo relative isolation vs track relative isolation
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Figure 1: Jet faking photons distribution
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Figure 2: True photons distribution
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Fake factor and purity

Calo relative isolation vs track relative isolation

Figure 3: Fake factors method sketch

We would like to have P ′ as small as possible, and at the same time f
reasonably small: few fake photons in the Isolated Region and few true
photons in the Non-Isolated Region.
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Which photons are "true" and which are "fake"?

Fragmentation photons are photons emerging from parton showers. The
photons we are looking for, from H −→ γγd , are much more similar to
direct photons.
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Which photons are "true" and which are "fake"?

Fragmentation photons are in any case prompt photons so in inclusive
photon analyses they are considered part of the signal"
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Figure of merit

The first approach consisted in defining a figure of merit M to elect the
best Non-isolated Region.

error on the estimation of  
the number of fake photons in SR 

error on the fake factor  
estimation

error on the purity  
estimation
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Search for a Non-Isolated Region

Isolated Region
Fixed Cut Tight

isol reltrack < 0.05

isol relcalo < 0.022

Figure 4: Search for a Non-Isolated Region ortogonal to the
Isolated Region
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Search for a Non-Isolated Region

The best Non-Isolated Region is defined by:

isol relcalo =
E calo40
T − 2450

pγT
> 0.022

∀ isol reltrack =
ptrack20
T

pγT

Fake factor and purity in this Non-Isolated Region are:

f = 0.83 ± 0.10

P = 0.0864761
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Elected Non-Isolated Region

Figure 5: Pseudo-purity P’ in fine bins of relative isolation in tracker and calo
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Elected Non-Isolated Region

We then abandoned relative isolation in the tracker: it is not recommended
as working point.
This doesn’t affect our choice for the Non-Isolated Region.

Figure 6: Relative isolation in calo for tight photons MC.

Fixed Cut
Tight Calo

Only
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Should we trust f and P from Monte Carlo?

Isolation is typically not well modelled by MC for jet faking photons.

We need to check our results on data.
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Loose photons

How to get jet faking photons in data?

We have different possibile ID selection:
loose, if they satisfy loose criteria but not the tight ones;
loose5, if they satisfy the loose criteria and pass tight cuts on all
egamma shower shapes of HCAL and ECAL Middle layer;
loose4, if they are loose5 and pass tight cuts on Wstot shower shape
of the ECAL Strips.
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Loose photons

Figure 7: Variables describing shower shapes, energy ratios and width of the
energy deposit
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Loose photons

Figure 8: Variables describing shower shapes, energy ratios and width of the
energy deposit (loose5)
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Loose photons

Figure 9: Variables describing shower shapes, energy ratios and width of the
energy deposit (loose4)
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Loose photons
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Isolation comparison in MC: tight, loose, loose4, loose5

Isolation for tight, loose, loose4 and loose5 fake photons in MC is different

Figure 10: MC isolation for fake photons with different ID
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Isolation comparison (fake)γ in DATA: loose, loose4, loose5

Isolation for loose, loose4 and loose5 photons in DATA is different

Figure 11: DATA isolation for (fake) photons with different ID
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Isolation comparison for loose fake γ: MC and data

MC and DATA isolations for a same ID are different

Figure 12: Calo isolation in MC and DATA for loose photons
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Isolation comparison for loose5 fake γ: MC and data

MC and DATA isolations for a same ID are different

Figure 13: Calo isolation in MC and DATA for loose5 photons
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Isolation comparison for loose4 fake γ: MC and data

MC and DATA isolations for a same ID are different

Figure 14: Calo isolation in MC and DATA for loose4 photons
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Extrapolation L->T

We would like to calculate fake factors using tight fake photons in data, to
check our results obtained with MC.

Problem: In data, we cannot know which tight photons are true and which
fake.

Solution: We can try to extrapolate the tight fake photons distribution in
data from the loose photons distribution in data, assuming that:

loose photons in data are mostly fake;
the transformation that links tight and loose distributions in MC is
"somehow" related to the one that links tight and loose in data.
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Extrapolation L->T

Figure 15: L −→T transformation
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Step 1: get L->T transformation from MC

Let’s assume that tight xMC
T and loose xMC

L distributions in MC are linked
by an affine transformation, the easiest transformation to reproduce mean
and standard deviation of the start distribution:

xMC
T = a+ bxMC

L

We want to find a, b such that:

xMC
T = µMC

T +
σMC
T

σMC
L

(xMC
L − µMC

L )

so

a = µMC
T −

σMC
T

σMC
L

µMC
L

b =
σMC
T

σMC
L
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Step 1: get L->T transformation from MC

Let’s assume:
the scale factor b stays the same in MC and data;
the offset a in data should depend on σdata

L , σdata
T , which is known,

and on µdata
T , which is unknown. So we assume the shift of the

average going from loose to tight is proportional to the rms in both
data and MC.

µdata
T = µdata

L +
σdata
L

σMC
L

(µMC
T − µMC

L )
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Step 2: apply L->T transformation to DATA

It’s all set, we can now apply the transformation to DATA:

xdataT = µdata
L +

σdata
L

σMC
L

(µMC
T − µMC

L ) +
σMC
T

σMC
L

(xdataL − µdata
L )

−→ We obtain tight fake photons distributions in DATA.
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Step 3: obtained distributions

Figure 16: Distributions of tight fake photons (DATA) isolation, extrapolated
from loose (DATA)
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Data and Monte Carlo comparison

Problem: we need to introduce a trigger to be able to compare data and
Monte Carlo.
Solution: Ok, but which one?

Analysis Trigger

Nγtight = 1
|p⃗γT | > 50 GeV
|p⃗miss

T | > 70 GeV
mT > 80 GeV

Leptonic Trigger
Nel = 1 or Nel = 2;
Nµ = 1 or Nµ = 2;

MET Trigger

|p⃗miss
T | > 90 GeV
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Validation on loose5

µdata
T − µdata

L

σdata
L

=
µMC
T − µMC

L

σMC
L

Let’s validate our hypothesis on loose5 photons, which we can compare in
data and MC assuming they are mostly fake photons.
We introduce a factor R; let’s see when R is close to 1.

µdata
L5 − µdata

L

σdata
L

= R
µMC
L5 − µMC

L

σMC
L

Giulia Maineri Studying jet faking photons University of Milan 35 / 57



Binning in η

Pseudorapidity binning is chosen considering the detector geometry:
etabin00 represents the inclusive region;
etabin01: [0; 0.6], the upper limit η = 0.6 is the point after which the
material in front of ECAL increases a lot;
etabin02: [0.6; 1.37], the upper limit is defined by the beginning of the
crack region;
etabin03: [1.37; 1.52], corresponds to the crack region;
etabin04: [1.52; 1.81], the upper limit is the point where the
presampler ends;
etabin05: [1.81; 2.37].
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Binning in pT

Transverse momentum binning is chosen as follows:
ptbin00 represents the inclusive region;
ptbin01: [25, 35]GeV;
ptbin02: [35, 45]GeV;
ptbin03: [45, 55]GeV;
ptbin04: [55, 65]GeV;
ptbin05: [65, 75]GeV;
ptbin06: [75, 100]GeV;
ptbin07: [100, 150]GeV;
ptbin08: [150, 250]GeV;
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Analysis trigger
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Figure 17: R, analysis trigger
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Leptonic trigger
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Figure 18: R, leptonic trigger
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MET trigger
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Figure 19: R, MET trigger
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Validation on loose5

Let’s do the same validation using median and width, two indicators less
sensitive to outliers.

meddata
L5 −meddata

L

wdata
L

= R
medMC

L5 −medMC
L

wMC
L

where med is the median and w is calculated as:

width

16%

isolation

84%
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Analysis trigger
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Figure 20: R, analysis trigger
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Leptonic trigger
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Figure 21: R, leptonic trigger
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MET trigger
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Figure 22: R, MET trigger
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Validation on loose5

Problem: R is very unstable. It is not possible to perform the extrapolation
in an exclusive regions in pT , η.

Solution: Let’s be either inclusive in pT or in η.
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R comparison for different trigger, inclusive in η
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R comparison for different trigger, median and width,
inclusive in η
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η distribution, MET trigger

Figure 23: Loose photons
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Figure 24: Tight photons

=⇒ good agreement
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η distribution, analysis trigger

Figure 25: Loose photons
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Figure 26: Tight photons

=⇒ good agreement
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R comparison for different trigger, inclusive in pT
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R comparison for different trigger, median and width,
inclusive in pT
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pT distribution, leptonic trigger

Figure 27: Loose photons Figure 28: Tight photons

=⇒ bad agreement
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pT distribution, analysis trigger

Figure 29: Loose photons Figure 30: Tight photons

=⇒ good agreement
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pT distribution, MET trigger
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Figure 31: Loose photons
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Figure 32: Tight photons

=⇒ bad agreement
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Elected trigger

We are left with these possibilities:

MET Trigger
Mean: 0.94
Spread: 0.14
inclusive in η
mean, sigma

Analysis Trigger
Mean: 0.87
Spread: 0.14
inclusive in η
mean, sigma

MET Trigger
Median: 0.81
Width: 0.15
inclusive in η
median, width

Analysis Trigger
Median: 1.1
Width: 0.26
inclusive in η
median, width

Analysis Trigger
Mean: 0.94
Spread: 0.07

inclusive in pT
mean, sigma

Analysis Trigger
Median: 0.82
Width: 0.08

inclusive in pT
median, width
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Elected trigger
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Conclusions and next steps

Summary
We presented this new method to estimate the jet faking photons
background based on extrapolation of fake tight photons
distributions in data from loose photons distributions.
We tried to validate the method comparing loose5 distribution with
the extrapolated one.
Ratio R in exclusive regions in η, pT was found to suffer from
fluctuations, hence the extrapolation should be done in a region
inclusive in η or pT only;
Different triggers were explored in order to have R ∼ 1 and a small
spread in either η or pT : the two best options is Analysis Trigger
inclusive in pT , using as indicators median and width.

Giulia Maineri Studying jet faking photons University of Milan 57 / 57



Conclusions and next steps

Next steps

Extrapolate fake tight photons
isolation distribution;
Calculate fake factors;
How to treat fake factors
uncertainties: need to
propagate mean and rms errors,
envelope method?
Calculate purity from the
extrapolated distribution of tight
fake photons in DATA:
normalizing the tail and
subtracting;
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