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NATURALNESS PROBLEM

How to realise naturally flat inflationary potentials without fine-tuning?

RENORMALIZABILITY
Can we find a new, highly predictive, criterion beyond renormalizability?

INFLATION

How to make divergent quantum correction naturally small?

UNIFYING PRINCIPLE FOR 3 MAIN ISSUES
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Basic idea: a fundamental QFT does not involve any intrinsic parameter 
with dimension of mass or length

ϕ = k ϕ̃Canonical field 
Dimension of a mass

Scale-invariant field 
Dimensionless

Following Wetterich, we can introduce an explicit mass scale k

C. Wetterich  Nucl. Phys. B 964 (2021) 
A. Strumia & A. Salvio J. High Energ. Phys., 6 (2017)
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Basic idea: a fundamental QFT does not involve any intrinsic parameter 
with dimension of mass or length

ϕ = k ϕ̃Canonical field 
Dimension of a mass

Scale-invariant field 
Dimensionless

Following Wetterich, we can introduce an explicit mass scale k

The corresponding effective actions obey

k∂kΓk[ϕ] = ζk[ϕ] k∂kΓk[ϕ̃] = 0

General solution Particular, scaling solution holding when 
the canonical fields are expressed in terms 

of the scale-invariant ones

C. Wetterich  Nucl. Phys. B 964 (2021) 
A. Strumia & A. Salvio J. High Energ. Phys., 6 (2017)
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Scale-invariant theory non-minimally coupled to gravity 

ℒJ = −g [ξ ϕ2R − λϕ4 −
1
2

(∂ϕ)2]
Weyl rescaling from the Jordan to the Einstein frame

ℒE = −g̃ [
M2

pl

2
R̃ − M4

pl
λ
ξ2

−
1
2

(∂ϕ̃)2]
The potential is flat at tree-level: no fine-tuning  

Scale symmetry breaking can occur from quantum corrections

FUNDAMENTAL SCALE INVARIANCE
NATURALLY FLAT POTENTIALS FOR INFLATION
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Coefficients of super-renormalizable terms  Power-law divergences⟶

Mass dimension < 4 
in 3+1 dimensions

Fundamental scale invariance implies only mass dimension 4 Lagrangian 
terms

➤ Indication that Nature may prefer dimension-4 operators

➤With a dimensional regularization scheme, all the counterterms vanish

FUNDAMENTAL SCALE INVARIANCE
SOLUTION TO THE NATURALNESS PROBLEM
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For general renormalizable theories the effective action remains well 
defined in the continuum limit if one employs renormalized fields 

ϕR,i(x) = kdi fi(k) ϕ̃i(x)Renormalized fields Scale-invariant field

FUNDAMENTAL SCALE INVARIANCE
A CRITERION BEYOND RENORMALIZABILITY
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For general renormalizable theories the effective action remains well 
defined in the continuum limit if one employs renormalized fields 

ϕR,i(x) = kdi fi(k) ϕ̃i(x)Renormalized fields Scale-invariant field

Theories with fundamental scale invariance: 

➤ Renormalizable 

➤ For some choice of the fields  the 
effective action becomes k-independent 

➤ Exact scaling solutions: no free 
parameters. High predictive power

ϕ̃

FUNDAMENTAL SCALE INVARIANCE
A CRITERION BEYOND RENORMALIZABILITY
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M. Rinaldi & L. Vanzo PR D 94 (2016)

➤ : scalar-tensor theory of modified gravityℒEH ⟶ f(R, ϕ)

ℒJ = −g [ α
36

R2 +
ξ
6

ϕ2R −
1
2

(∂ϕ)2 −
λ
4

ϕ4], α, λ, ξ > 0

Higher order 
term in R

Scalar field

FUTURE INVESTIGATION
• Weyl curvature term   

• Running of the paramters 

• Coupling to gauge fields   

C2

SCALE-INVARIANT QUADRATIC GRAVITY
THE MODEL
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The field  is subjected to an effective potentialϕ Veff(ϕ) = −
ξ
6

ϕ2R +
λ
4

ϕ4

Classical scale-symmetry breaking Dynamical generation of a mass scale
The scalar field takes a non-zero 

VEV at the minimum
Natural identification with the 

Planck mass

⟨ϕ2
0⟩ =

ξR
3λ

ξ
6

ϕ2
0 R ≡

1
2

M2
plR

ϕ

V

Saddle point

Stable fixed point

SCALE-INVARIANT QUADRATIC GRAVITY
JORDAN FRAME
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g*μν = Ω2gμν

Two dynamical degrees of freedom: are we in multi-field inflation?

𝔣 ϕ

ℒE = −g [ M2

2
R −

3M2

f 2
(∂f )2 −

f 2

2M2
(∂ϕ)2 − V( f, ϕ)]

SCALE-INVARIANT QUADRATIC GRAVITY
EINSTEIN FRAME
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Noether’s current conservation: constraint on the two-fields dynamics

Flat direction

SCALE-INVARIANT QUADRATIC GRAVITY
EINSTEIN FRAME: NOETHER’S CURRENT
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Noether’s current conservation can be employed to shift all the dynamics 
on one field

ℒE = −g
M2

2
R −

1
2

∂μρ ∂μρ − 3Cosh [ ρ

6M ]
2

∂μ χ∂μχ − V(ρ)

ρ = g(𝔣, ϕ) χ = f(𝔣, ϕ)

 J. Garcia-Bellido et al. PR D 84 (2011) 
G. Tambalo & M. Rinaldi Gen. Relativ. 

Gravit. 49 (2017)

SCALE-INVARIANT QUADRATIC GRAVITY
NOETHER’S CURRENT CONSERVATION
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ρ

GOLDSTONE 
BOSON

χ

INFLATON

V

ρ/M

Unstable point

Stable fixed point

➤ Naturally flat plateau: no fine-tuning 

➤ Non-vanishing at the minima
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SCALE-INVARIANT QUADRATIC GRAVITY
NOETHER’S CURRENT CONSERVATION: SINGLE-FIELD INFLATION



Employing Noether’s current conservation we show that

δs = 0

➤ Scale invariance protects from any form of geometrical destabilization 

GEOMETRICAL DESTABILIZATION OF INFLATION
S. Renaux-Petel & K. Turzyński Phys. Rev. Lett. 117 (2016)

➤Multi-field inflation 
➤Hyperbolic fields’ space 
geometry

: tachyonic 
instability prematurely 
ending inflation

m2
s(eff ) < 0

SCALE-INVARIANT QUADRATIC GRAVITY
NOETHER’S CURRENT CONSERVATION: ENTROPY PERTURBATIONS 
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W. Giarè, M. De Angelis, C. van de Bruck, & E. Di Valentino 
JCAP 12 (2023)

 Numerical integration up to the end of inflation ( )|ϵ | = 1

Sufficiently long inflation?

Compute As, ns, αs, r

Are they within some reasonably chosen ranges?

Implement CAMB and assign a likelihood based 
on how well the model agrees with CMB data

Discard

Discard

INFLATIONARY PREDICTIONS
NUMERICAL ANALYSIS
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OBSERVATIONAL CONSTRAINTS
•  

•  

• 

ξ < 0.00142

α = 1.951+0.076
−0.11 × 1010

Ω = 0.94+0.68
−2.8 × 10−5

•  

•  

• 

AS = (2.112 ± 0.033) × 10−9

nS = 0.9638+0.0015
−0.0010

r > 0.00332

➤ Lower bound on the tensor-to-
scalar ratio r, that will be 
testable from next generation 
CMB experiments

Ω ≡ αλ + ξ2

INFLATIONARY PREDICTIONS
OBSERVATIONAL CONSTRAINTS
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➤ Overall insensitivity to initial conditions 
 

➤  (95% C.L.): conformal invariance is ruled out 
 

➤ Strong correlation between  and  to avoid eternal inflation 
 

ξ < 0.00142

Ω ξ

INFLATIONARY PREDICTIONS
OBSERVATIONAL CONSTRAINTS
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ℒ = −g
M2

pl

2 [R +
R2

6M2 ]

➤ Starobinsky’s model is scale-invariant when the  term dominates! 

➤ Can we discriminate between the two models?

R2

Scale-invariant

INFLATIONARY PREDICTIONS
SCALE INVARIANCE VS STAROBINSKY
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 and r are anti-correlated like in 
Starobinsky’s model only at fixed . 
Overall, they are correlated: it is 
potentially possible to discriminate 
between the two models! 

ns

ξ

INFLATIONARY PREDICTIONS
SCALE INVARIANCE VS STAROBINSKY
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➤ Fundamental scale invariance as a new theoretical principle beyond 
renormalizability 

➤ Solution to the naturalness problem and flat potentials for inflation  

➤ Scale-invariant quadratic gravity: Noether’s current conservation for 
single-field dynamics and vanishing entropy perturbations 

➤ Promising numerical result: the model is competitive with Starobinsky 

SUMMARY



BACKUP SLIDES



➤ Scale invariance can be checked explicitely

∙ ḡμν(x) = gμν(ℓx)

∙ ϕ̄(x) = ℓϕ(ℓx)
ℒ̄ = ℒ

SCALE TRANSFORMATION

➤ : scalar-tensor theory of modified gravityℒEH ⟶ f(R, ϕ)

M. Rinaldi & L. Vanzo PR D 94 (2016)

ℒJ = −g [ α
36

R2 +
ξ
6

ϕ2R −
1
2

(∂ϕ)2 −
λ
4

ϕ4], α, λ, ξ > 0

Higher order 
term in R

Scalar field

SCALE-INVARIANT QUADRATIC GRAVITY
THE MODEL



Squared Weyl curvature term: conformally-invariant, second order term. 
Why don’t we add it to the action?

C2 = 2RμνRμν −
2
3

R2 + 𝒢

𝒢 = R2 − 4RμνRμν + RμνρσRμνρσ

Background: 
The Weyl curvature term vanishes in a conformally flat spacetime  

 no contribution to the equations of motion→

Perturbations: 
Weyl-Starobinsky inflation is plagued by ghosts and classical 
instabilities  possible drawback also here (ongoing project)→

A. De Felice et al. PR D 108, 123524 (2023)

SCALE-INVARIANT QUADRATIC GRAVITY
WEYL CORRECTION



Covariance matrix  and mean 
value of the parameters 

Σ
μ

Analytical likelihood

➤ Planck 2018 temperature and polarisation 
(TT TE EE) likelihood 

➤ B-modes power spectrum likelihood cleaned 
for foreground contamination (Bicep/Keck 
Array Collaboration)

DATA

ℒ ∝ exp (−
1
2 (x − μ)T Σ−1 (x − μ)), x ≡ (As, ns, αs, r)

ANALYTICAL LIKELIHOOD

W. Giarè, M. De Angelis, C. van de Bruck, & E. Di Valentino JCAP 
12 (2023)

INFLATIONARY PREDICTIONS
LIKELIHOOD



Modify the Maxwell’s action and add helicity to generate primordial 
magnetic fields through a sawtooth coupling to the inflaton: EM 
conformal invariance is broken only during inflation  amplification of 
vector perturbations

→

  S = −
1

16π ∫ d4x −g I2[ζ(t)] [FμνFμν − γFμνF̃μν] + ∫ d4x −gℒE

I =

𝒞 ( a
a* )

ν1

ai > a > a*

𝒞 ( a
a* )

−ν2

a* > a > af
1

INFLATION REHEATING

N

I

Ni NfN*

{

C. Cecchini & M. Rinaldi Phys Dar Univ 40 (2023)
INFLATIONARY PREDICTIONS
MAGNETOGENESIS



Present-day magnetic field’s amplitude and coherence length compatible 
with bounds on the IGM fields

MHD tu
rbu
len
ce 
dec
ay 

130
3.7

121
CMB 

2204.06302

Blazars 1006.3504

C. Cecchini & M. Rinaldi Phys Dar Univ 40 (2023)
INFLATIONARY PREDICTIONS
MAGNETOGENESIS


