4th International FLAG Workshop: the Quantum and Gravity

9 th September 2024

Ghost-driven instabilities in black hole evaporation

SISSA

Samuele Marco Silveravalle and Alfio Bonanno

(Provocative) outline:

■ Choose a theory with quantum and classical ghosts

- Show that ghosts make the Schwarzschild solution unstable
- Argue that black hole evaporation ends with a naked singularity
- Conclusions

Introduction

Black hole evaporation and quadratic gravity

[Introduction](#page-2-0)

[Physical motivation](#page-3-0)

Why black hole evaporation? Semiclassical gravity

 \Box Classical curved spacetime $+$ Quantum Field Theory

Black hole evaporation

⇓

Fundamental assumption: $E_{QFT} \ll E_{Quantum\ Gravity}$

[Physical motivation](#page-3-0)

Why black hole evaporation? Information paradox

Information is accessible Information is not accessible Information is lost

Final stages of evaporation \implies $T \to \infty$ \implies $E_{QFT} \sim E_{Quantum\ Gravity}$

Solution: quantum correction for gravity?

[Introduction](#page-2-0)

[Physical motivation](#page-3-0)

Why quadratic gravity? Perturbative approach

[Introduction](#page-2-0)

[Physical motivation](#page-3-0)

Why quadratic gravity? Perturbative approach

[Introduction](#page-2-0)

[Physical motivation](#page-3-0)

Why quadratic gravity? Perturbative approach

Quadratic Gravity

[Introduction](#page-2-0)

[Physical motivation](#page-3-0)

Why quadratic gravity? Wilsonian approach

Non-renormalizable theory \implies effective theory at low energies

[Introduction](#page-2-0)

[Physical motivation](#page-3-0)

Why quadratic gravity? Wilsonian approach

Non-renormalizable theory \implies effective theory at low energies

[Introduction](#page-2-0)

[Physical motivation](#page-3-0)

Why quadratic gravity? Wilsonian approach

Non-renormalizable theory \implies effective theory at low energies

 \Box [The theory in exam](#page-11-0)

Quadratic gravity: a classical model for quantum corrections

$$
\mathcal{I}_{QG} = \int d^4x \sqrt{-g} \left[\gamma R - \alpha C^{\mu\nu\rho\sigma} C_{\mu\nu\rho\sigma} + \beta R^2 + \chi \mathcal{G} \right] \begin{cases} S = 2, & m = 0 \\ S = 0, & m_0^2 = \gamma/6\beta \\ S = 2, & m_2^2 = \gamma/2\alpha \end{cases}
$$

PRO: general, IR limit of fundamental theories, renormalizable

CON: negative energy states \implies non-unitary theory

First assumption:

Classical solutions as first quantum corrections

 \Box [The theory in exam](#page-11-0)

Quadratic gravity: a classical model for quantum corrections

$$
\mathcal{I}_{QG} = \int d^4x \sqrt{-g} \left[\gamma R - \alpha C^{\mu\nu\rho\sigma} C_{\mu\nu\rho\sigma} + \beta R^2 + \chi \mathcal{G} \right] \begin{cases} S = 2, & m = 0 \\ S = 0, & m_0^2 = \gamma/6\beta \\ S = 2, & m_2^2 = \gamma/2\alpha \end{cases}
$$

PRO: general, IR limit of fundamental theories, renormalizable

CON: negative energy states \implies non-unitary theory

First assumption:

Classical solutions as first quantum corrections

 \Box [The theory in exam](#page-11-0)

Quadratic gravity: a classical model for quantum corrections

$$
\mathcal{I}_{QG} = \int d^4x \sqrt{-g} \left[\gamma R - \alpha C^{\mu\nu\rho\sigma} C_{\mu\nu\rho\sigma} + \beta R^2 + \chi \mathcal{G} \right] \begin{cases} S = 2, & m = 0 \\ S = 0, & m_0^2 = \gamma/6\beta \\ S = 2, & m_2^2 = \gamma/2\alpha \end{cases}
$$

PRO: general, IR limit of fundamental theories, renormalizable

CON: negative energy states \implies non-unitary theory

First assumption:

Classical solutions as first quantum corrections

[Black holes in quadratic gravity](#page-14-0)

Black holes in quadratic gravity Old and new solutions

[Black holes in quadratic gravity](#page-14-0)

[Symmetries and boundary conditions](#page-15-0)

Symmetries and weak field limit

Staticity, spherical symmetry:

$$
\mathrm{d}s^2 = -h(r)\mathrm{d}t^2 + \frac{\mathrm{d}r^2}{f(r)} + r^2\mathrm{d}\Omega^2
$$

Asymptotic flatness (isolated objects):

$$
h(r) \sim 1 - \frac{2M}{r} + 2S_2 \frac{e^{-m_2 r}}{r}
$$

$$
f(r) \sim 1 - \frac{2M}{r} + S_2 \frac{e^{-m_2 r}}{r} (1 + m_2 r)
$$

Total (ADM) mass: M

·—
'2

10/27

[Ghost-driven instabilities in black hole evaporation](#page-0-0) [Black holes in quadratic gravity](#page-14-0)

[Symmetries and boundary conditions](#page-15-0)

Event horizon: internal boundary

Series expansion around horizon radius r_H :

$$
h(r) = h_1 (r - r_H) + \sum_{n=2}^{\infty} h_n (r - r_H)^n
$$

$$
f(r) = f_1 (r - r_H) + \sum_{n=2}^{\infty} f_n (r - r_H)^n
$$

Hawking: $T_{BH} = \frac{1}{4\pi}$ 4π √ $\overline{h_1 f_1}$ Wald: $S_{BH} = 16\pi^2 \gamma \left(r_H^2 + \frac{2}{m_2^2} (1 - f_1 r_H) \right)$ [Ghost-driven instabilities in black hole evaporation](#page-0-0) [Black holes in quadratic gravity](#page-14-0) [Symmetries and boundary conditions](#page-15-0)

Nature of singularity: behavior close to the origin

=⇒

Series expansion around the origin:

$$
h(r) = rt \sum_{n=0}^{\infty} h_{t+n} r^n
$$

$$
f(r) = rs \sum_{n=0}^{\infty} f_{s+n} r^n
$$

Divergent metric:
$$
t = -1
$$
, $s = -1$

$$
t = \lim_{r \to 0} \frac{\text{d} \log (h(r))}{\text{d} \log(r)}
$$

$$
s = \lim_{r \to 0} \frac{\text{d} \log (f(r))}{\text{d} \log(r)}
$$

Vanishing metric: $t = 2$, $s = -2$

1日 ▶ 1日 ▶ 1 국 ▶ 1 국 ▶ 그룹 ▶ 그 국 → 수익 Q → 12/27

[Black holes in quadratic gravity](#page-14-0)

 L [Black hole solutions](#page-18-0)

Properties of black holes in quadratic gravity

[Ghost-driven instabilities in black hole evaporation](#page-0-0) [Black holes in quadratic gravity](#page-14-0)

 L [Black hole solutions](#page-18-0)

Linear perturbations and stability

Metric perturbation:

$$
g_{\mu\nu} = \bar{g}_{\mu\nu}(r) + \delta g_{\mu\nu}(r, t) = \bar{g}_{\mu\nu} + \begin{cases} h_{\mu\nu}, & \text{massless tensor} \\ \phi, & \text{massive scalar} \\ \psi_{\mu\nu}, & \text{massive tensor} \end{cases}
$$

Reducing the degrees of freedom: $\psi_{\mu\nu} \rightarrow \psi_{\mu\nu}(\varphi)$

Regge-Wheeler-Zerilli-like equation:

$$
\left(\frac{\mathrm{d}^2}{\mathrm{d}t^2} - \frac{\mathrm{d}^2}{\mathrm{d}r^{*2}} + V(r^*)\right)\varphi = 0
$$

[Black holes in quadratic gravity](#page-14-0)

 L [Black hole solutions](#page-18-0)

Linear perturbations and stability

Metric perturbation:

$$
g_{\mu\nu} = \bar{g}_{\mu\nu}(r) + \delta g_{\mu\nu}(r, t) = \bar{g}_{\mu\nu} + \begin{cases} h_{\mu\nu}, & \text{massless tensor} \\ \phi, & \text{massive scalar} \\ \psi_{\mu\nu}, & \text{massive tensor} \end{cases} \implies \text{ghosts!}
$$

Reducing the degrees of freedom: $\psi_{\mu\nu} \rightarrow \psi_{\mu\nu}(\varphi)$

Regge-Wheeler-Zerilli-like equation:

$$
\left(\frac{\mathrm{d}^2}{\mathrm{d}t^2} - \frac{\mathrm{d}^2}{\mathrm{d}r^{*2}} + V(r^*)\right)\varphi = 0
$$

[Black holes in quadratic gravity](#page-14-0)

 L [Black hole solutions](#page-18-0)

Black hole crossing point: onset of instabilities

(ロ) (图) (경) (경) (경) 및 990 15/27

[Black holes in quadratic gravity](#page-14-0)

[Black hole phase transition](#page-22-0)

Black hole crossing point: a phase transition?

イロト イ押ト イヨト イヨト \equiv $\begin{array}{c} \curvearrowleft \curvearrowright \curvearrowright \end{array}$ 16/27 [Ghost-driven instabilities in black hole evaporation](#page-0-0) [Black holes in quadratic gravity](#page-14-0) \Box [Black hole phase transition](#page-22-0)

Black hole crossing point: a phase transition?

$$
\psi_{\mu\nu}(r,t) \sim \psi_{\mu\nu,bo}(r,t) e^{-\frac{t}{\tau}} e^{-\frac{r}{\xi}}
$$

Critical point: $\lambda \to \lambda_c$ \implies $\tau \to \infty$, $\xi \to \infty$ Order parameter: $\psi_{\mu\nu} = \delta R_{\mu\nu} \qquad \Longrightarrow$ $\int \lambda < \lambda_c, \quad R_{\mu\nu} = 0$ $\lambda > \lambda_c$, $R_{\mu\nu} \neq 0$ Symmetry breaking: $rac{\mathrm{d}\theta}{\mathrm{d}\tau} = -\frac{1}{3}$ $\frac{1}{3}\theta - R_{\mu\nu}x^{\mu}x^{\nu}$

17/27

[Black holes in quadratic gravity](#page-14-0)

[Black hole phase transition](#page-22-0)

Black hole phase transition and instabilities

(ロ) (图) (경) (경) (경) 및 990 18/27 [Ghost-driven instabilities in black hole evaporation](#page-0-0) [Black holes in quadratic gravity](#page-14-0) [Black hole phase transition](#page-22-0)

Black hole phase transition and instabilities

 $S_2^-=0 \to S_2^- < 0 \implies$ equilibrium phase transition, $\lambda=\mathcal{T}_{BH} \implies$ reversible process

 $\mathcal{S}_2^-=0\rightarrow \mathcal{S}_2^->0\implies$ dynamical phase transition, $\lambda=t\implies$ irreversible process

Second assumption:

The system will always end up in the unstable phase

[Black hole evolution](#page-26-0)

Black holes evolution

Unstable dynamics and its endpoint

[Black hole evolution](#page-26-0)

[Nature of the singularity](#page-27-0)

Unstable evolution: nature of the singularity

Equations for t and s in $x = -\log(r)$

$$
\frac{dt}{dx} = \frac{1}{2} (4 + 2t + 4s + t^2 + ts)
$$

$$
\frac{ds}{dx} = \frac{1}{2(t-2)} (8 + 8s - s^2 + 3t^2 + st^2 + 2s^2t - t^3)
$$

N.B. valid for time-dependent metric!

[Ghost-driven instabilities in black hole evaporation](#page-0-0) [Black hole evolution](#page-26-0) \Box [An equation for the evolution](#page-28-0)

Unstable evaporation: an equation for the evolution

No adiabatic expansion \implies full time-dependent evolution?

Asymptotic flatness (still isolated objects):

$$
f(r,t) \sim 1 - \frac{2M(t)}{r} + \frac{1}{r} \int dr r^2 \int dr' dt' G_{\left(\square - m_2^2\right)} \left(r, t, r', t'\right) \mathcal{C} \left(\mathcal{T}_{\mu\nu}\right)
$$

 $M(t)$ is the time-dependent ADM (and Misner-Sharp, and Hawking-Hayward) mass

$$
\left(\partial_t^2 + m_2^2\right)\partial_t M(t) = \frac{1}{8\alpha}\lim_{r\to\infty} r^2 T_{tr}(r,t)
$$

[Black hole evolution](#page-26-0)

 \Box [An equation for the evolution](#page-28-0)

- Educated guess for T_{tr} :
	- ghost instability
		- \implies $T_{tr} \propto e^{\nu t}, \ \nu > 0$
	- ghost dominance

 \implies $T_{tr} > 0$

Third assumption:

Stop evolution when $r_H \rightarrow 0$

イロト イタト イミト イミト ニヨー りんぐ 23/27

[Black hole evolution](#page-26-0)

 $L_{\text{Endpoint of evaporation}}$ $L_{\text{Endpoint of evaporation}}$ $L_{\text{Endpoint of evaporation}}$

Endpoint of evaporation: a naked singularity

イロト イタト イミト イミト ニヨー りんぐ 24/27

[Black hole evolution](#page-26-0)

 $L_{\text{Endpoint of evaporation}}$ $L_{\text{Endpoint of evaporation}}$ $L_{\text{Endpoint of evaporation}}$

Endpoint of evaporation: a safe naked singularity?

(ロ) (图) (경) (경) (경) 및 990 25/27 [Ghost-driven instabilities in black hole evaporation](#page-0-0) [Black hole evolution](#page-26-0) $\mathsf{L}_{\mathsf{Conclusions}}$ $\mathsf{L}_{\mathsf{Conclusions}}$ $\mathsf{L}_{\mathsf{Conclusions}}$

Conclusions

Conservative approach:

Information paradox: semiclassical graivty breaks down at high energies

 \implies inclusion of first order quantum corrections to gravity (even if they have ghosts)

Change of point of view:

Stationary (astrophysical) solution \implies instabilities have to be avoided Dynamical evolution \implies instabilities have to be followed

Accpetance of limitations:

A naked singularity cannot be accepted from a theoretical point of view If allowed by observations it can be a plausible direction

L[Black hole evolution](#page-26-0)

 $L_{\text{Conclusions}}$ $L_{\text{Conclusions}}$ $L_{\text{Conclusions}}$

[Black hole evolution](#page-26-0)

 $L_{\text{Conclusions}}$ $L_{\text{Conclusions}}$ $L_{\text{Conclusions}}$

What's next? Hope you will tell me!

[Black hole evolution](#page-26-0)

 $L_{Conclusions}$ $L_{Conclusions}$ $L_{Conclusions}$

A no-(scalar) hair theorem and ghosts

 $C_{\mu\nu\rho\sigma}$ is traceless \implies trace of vacuum e.o.m. is $(\Box - m_0^2) R = 0$

 $\sqrt{ }$ \int $\overline{\mathcal{L}}$ staticity asymptotic flatness $\qquad \Longrightarrow \qquad \qquad R = 0$ in all spacetime presence of event horizon

 R^2 term is irrelevant $\quad \implies \quad C$ \implies $C^{\mu\nu\rho\sigma}C_{\mu\nu\rho\sigma}$ term is crucial (ghosts!)

[Black hole evolution](#page-26-0)

 $L_{\text{Conclusions}}$ $L_{\text{Conclusions}}$ $L_{\text{Conclusions}}$

Numerical methods: shooting method

 $A \Box B + A \Box C$ 29/27