4th International FLAG Workshop: the Quantum and Gravity

9th September 2024

Ghost-driven instabilities in black hole evaporation

SISSA

Samuele Marco Silveravalle

and Alfio Bonanno

(Provocative) outline:

- Choose a theory with quantum and classical ghosts
- Show that ghosts make the Schwarzschild solution unstable
- Argue that black hole evaporation ends with a naked singularity
- Conclusions

Introduction

Introduction

Black hole evaporation and quadratic gravity

└─ Introduction

Physical motivation

Why black hole evaporation? Semiclassical gravity

Classical curved spacetime

(

Quantum Field Theory

Black hole evaporation

+

∜

Fundamental assumption:

$$E_{QFT} \ll E_{Quantum Gravity}$$

- Introduction

Physical motivation

Why black hole evaporation? Information paradox

Information is accessible Information is not accessible Information is lost

Final stages of evaporation \implies $T \rightarrow \infty$ \implies $E_{QFT} \sim E_{Quantum \ Gravity}$

Solution: quantum correction for gravity?

-Introduction

Physical motivation

Why quadratic gravity? Perturbative approach

-Introduction

Physical motivation

Why quadratic gravity? Perturbative approach

-Introduction

Physical motivation

Why quadratic gravity? Perturbative approach

-Introduction

Physical motivation

Why quadratic gravity? Wilsonian approach

Non-renormalizable theory \implies effective theory at low energies

-Introduction

Physical motivation

Why quadratic gravity? Wilsonian approach

Non-renormalizable theory \implies effective theory at low energies

-Introduction

Physical motivation

Why quadratic gravity? Wilsonian approach

Non-renormalizable theory \implies effective theory at low energies

- Introduction

└─ The theory in exam

Quadratic gravity: a classical model for quantum corrections

$$\mathcal{I}_{QG} = \int \mathrm{d}^4 x \sqrt{-g} \left[\gamma R - \alpha C^{\mu\nu\rho\sigma} C_{\mu\nu\rho\sigma} + \beta R^2 + \chi \mathcal{G} \right] \begin{cases} S = 2, & m = 0\\ S = 0, & m_0^2 = \gamma/6\beta\\ S = 2, & m_2^2 = \gamma/2\alpha \end{cases}$$

PRO: general, IR limit of fundamental theories, renormalizable

CON: negative energy states \implies non-unitary theory

First assumption:

Classical solutions as first quantum corrections

- Introduction

└─ The theory in exam

Quadratic gravity: a classical model for quantum corrections

$$\mathcal{I}_{QG} = \int \mathrm{d}^4 x \sqrt{-g} \left[\gamma R - \alpha C^{\mu\nu\rho\sigma} C_{\mu\nu\rho\sigma} + \beta R^2 + \chi \mathcal{G} \right] \begin{cases} S = 2, & m = 0\\ S = 0, & m_0^2 = \gamma/6\beta\\ S = 2, & m_2^2 = \gamma/2\alpha \end{cases}$$

PRO: general, IR limit of fundamental theories, renormalizable

CON: negative energy states \implies non-unitary theory

First assumption:

Classical solutions as first quantum corrections

- Introduction

└─ The theory in exam

Quadratic gravity: a classical model for quantum corrections

$$\mathcal{I}_{QG} = \int \mathrm{d}^4 x \sqrt{-g} \left[\gamma R - \alpha C^{\mu\nu\rho\sigma} C_{\mu\nu\rho\sigma} + \beta R^2 + \chi \mathcal{G} \right] \begin{cases} S = 2, & m = 0\\ S = 0, & m_0^2 = \gamma/6\beta\\ S = 2, & m_2^2 = \gamma/2\alpha \end{cases}$$

PRO: general, IR limit of fundamental theories, renormalizable

CON: negative energy states \implies non-unitary theory

First assumption:

Classical solutions as *first* quantum corrections

Black holes in quadratic gravity

Black holes in quadratic gravity Old and new solutions

Black holes in quadratic gravity

Symmetries and boundary conditions

Symmetries and weak field limit

Staticity, spherical symmetry:

$$\mathrm{d}s^2 = -h(r)\mathrm{d}t^2 + \frac{\mathrm{d}r^2}{f(r)} + r^2\mathrm{d}\Omega^2$$

Asymptotic flatness (isolated objects):

$$egin{aligned} h(r) &\sim 1 - rac{2\,M}{r} + 2\,S_2^{-}rac{\mathrm{e}^{-m_2\,r}}{r} \ f(r) &\sim 1 - rac{2\,M}{r} + S_2^{-}rac{\mathrm{e}^{-m_2\,r}}{r}\,(1+m_2\,r) \end{aligned}$$

Total (ADM) mass: M

Yukawa charge S_2^-

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Black holes in quadratic gravity

Symmetries and boundary conditions

Event horizon: internal boundary

Series expansion around horizon radius r_H :

$$h(r) = h_1 (r - r_H) + \sum_{n=2}^{\infty} h_n (r - r_H)^n$$

 $f(r) = f_1 (r - r_H) + \sum_{n=2}^{\infty} f_n (r - r_H)^n$

Hawking: $T_{BH} = \frac{1}{4\pi} \sqrt{h_1 f_1}$ Wald: $S_{BH} = 16\pi^2 \gamma \left(r_H^2 + \frac{2}{m_2^2} \left(1 - f_1 r_H \right) \right)$

Black holes in quadratic gravity

Symmetries and boundary conditions

Nature of singularity: behavior close to the origin

Series expansion around the origin:

$$h(r) = r^{t} \sum_{n=0}^{\infty} h_{t+n} r^{n}$$
$$f(r) = r^{s} \sum_{n=0}^{\infty} f_{s+n} r^{n}$$

Divergent metric:
$$t = -1$$
, $s = -1$

$$t = \lim_{r \to 0} \frac{\mathrm{d}\log(h(r))}{\mathrm{d}\log(r)}$$
$$s = \lim_{r \to 0} \frac{\mathrm{d}\log(f(r))}{\mathrm{d}\log(r)}$$

Vanishing metric: t = 2, s = -2

Black holes in quadratic gravity

Black hole solutions

Properties of black holes in quadratic gravity

<□ ト < @ ト < E ト < E ト E 9 Q @ 13/27</p>

Black holes in quadratic gravity

Black hole solutions

Linear perturbations and stability

Metric perturbation:

$$g_{\mu
u} = ar{g}_{\mu
u}(r) + \delta g_{\mu
u}(r,t) = ar{g}_{\mu
u} + egin{cases} h_{\mu
u}, & ext{massless tensor} \ \phi, & ext{massive scalar} \ \psi_{\mu
u}, & ext{massive tensor} \end{cases}$$

Reducing the degrees of freedom: $\psi_{\mu\nu} \rightarrow \psi_{\mu\nu}(\varphi)$

Regge-Wheeler-Zerilli-like equation:

$$\left(\frac{\mathrm{d}^{2}}{\mathrm{d}t^{2}}-\frac{\mathrm{d}^{2}}{\mathrm{d}r^{*2}}+V\left(r^{*}\right)\right)\varphi=0$$

Black holes in quadratic gravity

Black hole solutions

Linear perturbations and stability

Metric perturbation:

$$g_{\mu
u} = ar{g}_{\mu
u}(r) + \delta g_{\mu
u}(r,t) = ar{g}_{\mu
u} + egin{cases} h_{\mu
u}, & ext{massless tensor} \ \phi, & ext{massive scalar} \ \psi_{\mu
u}, & ext{massive tensor} & ext{massive tensor} & ext{massless tensor} \end{cases}$$

Reducing the degrees of freedom: $\psi_{\mu\nu} \rightarrow \psi_{\mu\nu}(\varphi)$

Regge-Wheeler-Zerilli-like equation:

$$\left(\frac{\mathrm{d}^{2}}{\mathrm{d}t^{2}}-\frac{\mathrm{d}^{2}}{\mathrm{d}r^{*2}}+V\left(r^{*}\right)\right)\varphi=0$$

Black holes in quadratic gravity

Black hole solutions

Black hole crossing point: onset of instabilities

<□▶ < @ ▶ < E ▶ < E ▶ ○ 2 ○ 3 ○ 15/27</p>

Black holes in quadratic gravity

Black hole phase transition

Black hole crossing point: a phase transition?

<ロト < 母 ト < 主 ト < 主 ト シ ミ の Q C 16/27

Black holes in quadratic gravity

Black hole phase transition

Black hole crossing point: a phase transition?

$$\psi_{\mu
u}(r,t)\sim\psi_{\mu
u,bo}(r,t)\,\mathrm{e}^{-rac{t}{ au}}\mathrm{e}^{-rac{r}{\xi}}$$

Critical point:
$$\lambda \to \lambda_c$$
 \Rightarrow $\tau \to \infty, \ \xi \to \infty$ Order parameter: $\psi_{\mu\nu} = \delta R_{\mu\nu}$ \Rightarrow $\begin{cases} \lambda < \lambda_c, \quad R_{\mu\nu} = 0\\ \lambda > \lambda_c, \quad R_{\mu\nu} \neq 0 \end{cases}$ Symmetry breaking: $\frac{d\theta}{d\tau} = -\frac{1}{3}\theta - R_{\mu\nu}x^{\mu}x^{\nu}$

▲□▶ ▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶ ▲ 三 ♪ ○ ○ 17/27

Black holes in quadratic gravity

Black hole phase transition

Black hole phase transition and instabilities

<ロト < 伊ト < 三ト < 三ト ミ の へ C 18/27

Black holes in quadratic gravity

Black hole phase transition

Black hole phase transition and instabilities

 $S_2^- = 0 \rightarrow S_2^- < 0 \implies$ equilibrium phase transition, $\lambda = T_{BH} \implies$ reversible process

 $S_2^- = 0 o S_2^- > 0 \implies$ dynamical phase transition, $\lambda = t \implies$ irreversible process

Second assumption:

The system will always end up in the unstable phase

Black hole evolution

Black holes evolution Unstable dynamics and its endpoint

Black hole evolution

└─ Nature of the singularity

Unstable evolution: nature of the singularity

Equations for t and s in $x = -\log(r)$

$$\frac{\mathrm{d}t}{\mathrm{d}x} = \frac{1}{2} \left(4 + 2t + 4s + t^2 + ts \right)$$
$$\frac{\mathrm{d}s}{\mathrm{d}x} = \frac{1}{2 \left(t - 2 \right)} \left(8 + 8s - s^2 + 3t^2 + st^2 + 2s^2t - t^3 \right)$$

N.B. valid for time-dependent metric!

Black hole evolution

An equation for the evolution

Unstable evaporation: an equation for the evolution

No adiabatic expansion \implies full time-dependent evolution?

Asymptotic flatness (still isolated objects):

$$f(r,t) \sim 1 - rac{2 M(t)}{r} + rac{1}{r} \int \mathrm{d}r \, r^2 \int \mathrm{d}r' \mathrm{d}t' G_{\left(\Box - m_2^2\right)}\left(r,t,r',t'
ight) \mathcal{C}\left(T_{\mu
u}
ight)$$

M(t) is the time-dependent ADM (and Misner-Sharp, and Hawking-Hayward) mass

$$\left(\partial_t^2 + m_2^2\right)\partial_t M(t) = \frac{1}{8\alpha}\lim_{r\to\infty}r^2 T_{tr}(r,t)$$

- Black hole evolution
 - An equation for the evolution

- Educated guess for T_{tr} :
 - ghost instability
 - $\implies T_{tr} \propto \mathrm{e}^{\nu t}, \ \nu > 0$
 - ghost dominance
 - $\implies T_{tr} > 0$

Third assumption:

Stop evolution when $r_H \rightarrow 0$

<ロト
(ロト

Black hole evolution

Endpoint of evaporation

Endpoint of evaporation: a naked singularity

<ロ > < 母 > < 三 > < 三 > < 三 > < 三 > < 三 > < 24/27

Black hole evolution

Endpoint of evaporation

Endpoint of evaporation: a safe naked singularity?

<ロト < 伊ト < 巨ト < 巨ト 三 のへで 25/27

-Black hole evolution

Conclusions

Conclusions

Conservative approach:

Information paradox: semiclassical graivty breaks down at high energies

 \implies inclusion of first order quantum corrections to gravity (even if they have ghosts)

Change of point of view:

Stationary (astrophysical) solution \implies instabilities have to be avoided Dynamical evolution \implies instabilities have to be followed

Accpetance of limitations:

A naked singularity cannot be accepted from a theoretical point of view If allowed by observations it can be a plausible direction

Black hole evolution

Conclusions

Black hole evolution

Conclusions

What's next? Hope you will tell me!

Black hole evolution

Conclusions

A no-(scalar) hair theorem and ghosts

 $C_{\mu
u
ho\sigma}$ is traceless \implies trace of vacuum e.o.m. is $\left(\Box-m_0^2\right)R=0$

 $\left\{ \begin{array}{ll} {\rm staticity} \\ {\rm asymptotic \ flatness} \\ {\rm presence \ of \ event \ horizon} \end{array} \right. \Longrightarrow \qquad R=0 \ {\rm in \ all \ spacetime}$

 R^2 term is irrelevant $\implies C^{\mu\nu\rho\sigma}C_{\mu\nu\rho\sigma}$ term is crucial (ghosts!)

Black hole evolution

Conclusions

Numerical methods: shooting method

< □ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 29/27