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Ghost-driven instabilities in black hole evaporation

(Provocative) outline:

Choose a theory with quantum and classical ghosts

Show that ghosts make the Schwarzschild solution unstable

Argue that black hole evaporation ends with a naked singularity

Conclusions
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Introduction

Introduction
Black hole evaporation and quadratic gravity
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Introduction

Physical motivation

Why black hole evaporation? Semiclassical gravity

Classical curved spacetime + Quantum Field Theory

⇓

Black hole evaporation

Fundamental assumption: EQFT ≪ EQuantum Gravity
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Introduction

Physical motivation

Why black hole evaporation? Information paradox

Information is accessible Information is not accessible Information is lost

Final stages of evaporation =⇒ T → ∞ =⇒ EQFT ∼ EQuantum Gravity

Solution: quantum correction for gravity?
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Physical motivation

Why quadratic gravity? Perturbative approach
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Introduction

Physical motivation

Why quadratic gravity? Wilsonian approach
Non-renormalizable theory =⇒ effective theory at low energies

Ieff =

∫
d4x

√
−g

E 4c0 + E 2c1R + c2R
2 + c3R

µνRµν + c4R
µνρσRµνρσ︸ ︷︷ ︸

Quadratic gravity

+
c5
E 2

R3 + ...
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Introduction

The theory in exam

Quadratic gravity: a classical model for quantum corrections

IQG =

∫
d4x

√
−g

[
γR − αCµνρσCµνρσ + βR2 + χG

] 
S = 2, m = 0

S = 0, m2
0 = γ/6β

S = 2, m2
2 = γ/2α

PRO: general, IR limit of fundamental theories, renormalizable

CON: negative energy states =⇒ non-unitary theory

First assumption:

Classical solutions as first quantum corrections
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Black holes in quadratic gravity

Black holes in quadratic gravity
Old and new solutions
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Black holes in quadratic gravity

Symmetries and boundary conditions

Symmetries and weak field limit

Staticity, spherical symmetry:

ds2 = −h(r)dt2 +
dr2

f (r)
+ r2dΩ2

Asymptotic flatness (isolated objects):

h(r) ∼ 1− 2M

r
+ 2 S−

2

e−m2 r

r

f (r) ∼ 1− 2M

r
+ S−

2

e−m2 r

r
(1 +m2 r)

Total (ADM) mass: M Yukawa charge S−
2
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Black holes in quadratic gravity

Symmetries and boundary conditions

Event horizon: internal boundary

Series expansion around horizon radius rH :

h(r) = h1 (r − rH) +
∞∑
n=2

hn (r − rH)
n

f (r) = f1 (r − rH) +
∞∑
n=2

fn (r − rH)
n

Hawking: TBH = 1
4π

√
h1f1 Wald: SBH = 16π2γ

(
r2H + 2

m2
2
(1− f1rH)

)
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Black holes in quadratic gravity

Symmetries and boundary conditions

Nature of singularity: behavior close to the origin

Series expansion around the origin:

h(r) = r t
∞∑
n=0

ht+nr
n

f (r) = r s
∞∑
n=0

fs+nr
n

=⇒
t = lim

r→0

d log (h(r))

d log(r)

s = lim
r→0

d log (f (r))

d log(r)

Divergent metric: t = −1, s = −1 Vanishing metric: t = 2, s = −2



13/27

Ghost-driven instabilities in black hole evaporation

Black holes in quadratic gravity

Black hole solutions

Properties of black holes in quadratic gravity
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Black holes in quadratic gravity

Black hole solutions

Linear perturbations and stability

Metric perturbation:

gµν = ḡµν(r) + δgµν(r , t) = ḡµν +


hµν , massless tensor

ϕ, massive scalar

ψµν , massive tensor =⇒ ghosts!

Reducing the degrees of freedom: ψµν → ψµν(φ)

Regge-Wheeler-Zerilli-like equation:(
d2

dt2
− d2

dr∗2
+ V (r∗)

)
φ = 0
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Black holes in quadratic gravity

Black hole solutions

Black hole crossing point: onset of instabilities
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Black holes in quadratic gravity

Black hole phase transition

Black hole crossing point: a phase transition?

ψµν(r , t) ∼ ψµν,bo(r , t) e
− t

τ e
− r

ξ

Critical point: λ→ λc =⇒ τ → ∞, ξ → ∞

Order parameter: ψµν = δRµν =⇒

{
λ < λc , Rµν = 0

λ > λc , Rµν ̸= 0

Symmetry breaking: dθ
dτ = −1

3θ − Rµνx
µxν
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Black holes in quadratic gravity

Black hole phase transition

Black hole phase transition and instabilities
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Black holes in quadratic gravity

Black hole phase transition

Black hole phase transition and instabilities

S−
2 = 0 → S−

2 < 0 =⇒ equilibrium phase transition, λ = TBH =⇒ reversible process

S−
2 = 0 → S−

2 > 0 =⇒ dynamical phase transition, λ = t =⇒ irreversible process

Second assumption:

The system will always end up in the unstable phase
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Black hole evolution

Black holes evolution
Unstable dynamics and its endpoint
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Black hole evolution

Nature of the singularity

Unstable evolution: nature of the singularity

Equations for t and s in x = − log(r)

dt

dx
=

1

2

(
4 + 2t + 4s + t2 + ts

)
ds

dx
=

1

2 (t − 2)

(
8 + 8s − s2 + 3t2

+ st2 + 2s2t − t3
)

N.B. valid for time-dependent metric!
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Black hole evolution

An equation for the evolution

Unstable evaporation: an equation for the evolution

No adiabatic expansion =⇒ full time-dependent evolution?

Asymptotic flatness (still isolated objects):

f (r , t) ∼ 1− 2M(t)

r
+

1

r

∫
dr r2

∫
dr ′dt ′G(□−m2

2)
(
r , t, r ′, t ′

)
C (Tµν)

M(t) is the time-dependent ADM (and Misner-Sharp, and Hawking-Hayward) mass

(
∂2t +m2

2

)
∂tM(t) =

1

8α
lim
r→∞

r2Ttr (r , t)
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Black hole evolution

An equation for the evolution

Educated guess for Ttr :

- ghost instability

=⇒ Ttr ∝ eνt , ν > 0

- ghost dominance

=⇒ Ttr > 0

Third assumption:

Stop evolution when rH → 0
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Black hole evolution

Endpoint of evaporation

Endpoint of evaporation: a naked singularity

“Triple points” rH → 0:

- M → 0

=⇒ Minkowski

- M → Me

=⇒ Singularity

Dynamical system:

(t, s) = (2,−2)?
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Black hole evolution

Endpoint of evaporation

Endpoint of evaporation: a safe naked singularity?

z∞ = 1√
h(r)

− 1 → ∞ Stable?
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Black hole evolution

Conclusions

Conclusions

Conservative approach:

Information paradox: semiclassical graivty breaks down at high energies

=⇒ inclusion of first order quantum corrections to gravity (even if they have ghosts)

Change of point of view:

Stationary (astrophysical) solution =⇒ instabilities have to be avoided

Dynamical evolution =⇒ instabilities have to be followed

Accpetance of limitations:

A naked singularity cannot be accepted from a theoretical point of view

If allowed by observations it can be a plausible direction
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Black hole evolution

Conclusions

What’s next? Hope you will tell me!
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Black hole evolution

Conclusions

A no-(scalar) hair theorem and ghosts

Cµνρσ is traceless =⇒ trace of vacuum e.o.m. is
(
□−m2

0

)
R = 0


staticity

asymptotic flatness =⇒ R = 0 in all spacetime

presence of event horizon

R2 term is irrelevant =⇒ CµνρσCµνρσ term is crucial (ghosts!)
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Black hole evolution

Conclusions

Numerical methods: shooting method
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