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Introduction

Contribution to vacuum energy from quantum fluctuations ∼ M4
P

Value inferred from observed accelerated expansion of the universe ρvac ∼ 10−123M4
P

CC problem: most severe naturalness problem in physics

Several attempts towards its solution

* Polyakov ... and later Jackiw ... Moscow zero ...

* Taylor - Veneziano ... non-local terms : V log V

... “Infinitely” many other attempts ...
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Consider the one-loop VDW Effective Action
* Euclidean action - Einstein-Hilbert truncation

Sgrav =
1

16πG

∫
d4x √g (−R + 2Λ)

* Cosmological framework: manifolds with typical length scale l ≫ M−1
P

* Gauge-invariant one-loop effective action, Γ1l
grav = Sgrav + δS1l

grav
geometrical approach, Vilkovisky-DeWitt

* Strategy put forward by Fradkin and Tseytlin / Taylor and Veneziano

* Particular attention to the role played by the measure

* Background field method: gµν = ḡµν + hµν

* When ḡµν has spherical symmetry, one-loop VDW effective action
coincides with the standard one calculated with gauge-fixing term

Sgf =
1

32πGξ

∫
d4x

√
ḡ

[
∇µ

(
hµ

ν −
1
2

δµ
ν hσ

σ

)]
after taking the limit ξ → 0 at the end of the calculation
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One-loop VDW Effective Action cont’d

Let us calculate the 1-loop correction δS1l
grav

Take spherical background ḡµν = g (a)
µν (a radius of the sphere)

(coordinates x angles ; g (a)
µν goes like a2 ;

∫
d4x

√
g (a) = 8π2

3 a4 , R(g (a)) = 12
a2 )

Classical Action S(a)
grav = πΛ

3G a4 − 2π
G a2

Add to Sgrav + Sgf the corresponding ghost action (vµ vector ghost fields)

Sghost =
1

32πG

∫
d4x

√
g (a) g (a) µν v∗

µ

(
−∇ρ∇ρ −

3
a2

)
vν

Identify 1-loop corrections to Λ
G and 1

G with coefficients of a4 and a2 in δS1l
grav
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One-loop VDW Effective Action cont’d

VDW one-loop correction δS1l
grav to S(a)

grav given by

e−δS1l
grav = lim

ξ→0

∫ [
Du(h)Dv∗

ρ Dvσ

]
e−δS(2)

where
δS(2) ≡ S2 + Sgf + Sghost

S2 quadratic term in the expansion of Sgrav[ g (a)
µν + hµν ]

S2 ≡
1

32πG

∫
d4x

√
g (a)

[
1
2

h̃µν
(

−∇ρ∇ρ − 2Λ +
8
a2

)
hµν +

h2

a2 − ∇ρh̃ρµ∇σ h̃µ
σ

]
h ≡ g (a)

µν hµν , h̃µν ≡ hµν − 1
2 g (a)

µν h

indexes raised with g (a) µν ; covariant derivatives in terms of g (a)
µν
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Measure
[
Du(h)Dv ∗

ρ Dvσ

]
[

Du(h)Dv∗
ρ Dvσ

]
≡

∏
x

[
g (a) 00(x)

(
g (a)(x)

)−1( ∏
α≤ β

dhαβ(x)
)(∏

ρ

dv∗
ρ (x)

)(∏
σ

dvσ(x)
)]

g (a) 00(x)
(

g (a)(x)
)−1 from integration over conjugate momenta1 (Fradkin - Vilkovisky)

Observe: g (a)
µν can be written as g (a)

µν = a2g (1)
µν

g (1)
µν metric of a sphere of unitary radius, a = 1

=⇒ g (a) 00(x)
(

g (a)(x)
)−1 = a−10 g (1) 00(x)

(
g (1)(x)

)−1

with g (1) 00(x)
(

g (1)(x)
)−1 a-independent

1 original expression in FV is g(a) 00(x)
(

g(a)(x)
)− 3

2 . Difference due to the fact that here both v and v∗ are world vectors, in

FV different choice.
√

g(a) Jacobian due to the change between these two equivalent functional integration variables (Unz).
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Reabsorb G−1/2a−1 in hµν =⇒ ĥµν = (32πG)−1/2 a−1hµν

S2 + Sgf rewritten as

S2+Sgf =
∫

d4x
√

g (1)
[1

2
hµν (

−∇ρ∇ρ − 2a2Λ + 8
)

ĥµν + ĥ 2 −
(

1 −
1
ξ

)
∇ρhρµ∇σhµ

σ

]
ĥ ≡ g (1)

µν ĥµν , hµν ≡ ĥµν − 1
2 g (1)

µν ĥ

indexes raised with g (1) µν ; covariant derivatives in terms of g (1)
µν

Clearly ĥµν defined on a sphere of unitary radius

Redefine vµ → (32πG)
1
2 vµ (covariant derivatives in terms of g (1)

µν )

Sghost =
∫

d4x
√

g (1) g (1) µν v∗
µ (−∇ρ∇ρ − 3) vν

Same as ĥµν : vµ defined on a sphere of unitary radius

=⇒ when written in terms of ĥµν and vµ, δS(2) = S2 + Sgf + Sghost contains only
dimensionless fluctuation operators ...
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... and then ...
[

Du(h)Dv∗
ρ Dvσ

]
≡

∏
x

[
a−10g (1) 00(x)

(
g (1)(x)

)−1 ( ∏
α≤ β

dhαβ(x)
)(∏

ρ

dv∗
ρ (x)

)(∏
σ

dvσ(x)
)]

⊕

ĥµν = (32πG)−1/2 a−1hµν =⇒
∏

α≤ β

dhαβ(x) = (32πG)5 a10
∏

α≤ β

dĥαβ(x)

⇓

[
Du(h)Dv∗

ρ Dvσ

]
= N

∏
x

[( ∏
α≤ β

dĥαβ(x)
)( ∏

ρ

dv∗
ρ (x)

)( ∏
σ

dvσ(x)
)]

a-independent terms as
∏

x g (1) 00(x)
(

g (1)(x)
)−1 included in harmless constant N
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Since ĥµν and vµ fields on a sphere of radius a = 1 =⇒
bases for symmetric tensors and vectors with eigenfunctions of the

Dimensionless Laplace-Beltrami operator −2
(s)
a=1 ≡ −a2 2

(s)
a

−2
(s)
a Laplace-Beltrami for sphere of radius a; s spins: s = 0, 1, 2

Dimensionless eigenvalues λ
(s)
n and corresponding degeneracies D(s)

n

λ
(s)
n = n2 + 3n − s ; D(s)

n =
2s + 1

3

(
n +

3
2

)3
−

(2s + 1)3

12

(
n +

3
2

)
where n = s, s + 1, . . .

Expanding ĥµν , v∗
ρ and vσ for δS1l

grav we have (backup slides)

δS1l
grav = −

1
2

log
det1[−2

(1)
a=1 − 3] det2[−2

(0)
a=1 − 6]

det0[−2
(2)
a=1 − 2a2Λ + 8] det2[−2

(0)
a=1 − 2a2Λ]

+
1
2

log
(

2a2Λ
)

+ B

B inessential a-independent term ; index i in deti signals that product of eigenvalues
starts from λ

(s)
s+i
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δS1l
grav = −

1
2

log
det1[−2

(1)
a=1 − 3] det2[−2

(0)
a=1 − 6]

det0[−2
(2)
a=1 − 2a2Λ + 8] det2[−2

(0)
a=1 − 2a2Λ]

+
1
2

log
(

2a2Λ
)

+ B

1
2 log

(
2a2Λ

)
(from integration over one of the modes in ĥµν (backup slides)) and B: irrelevant

for our scopes

Truly important term: first one in the right hand side
* Peculiarity: written in terms of automatically dimensionless determinants =⇒

No need to introduce any arbitrary mass scale (µ)

In typical calculations of δS1l
grav: dimensionful determinants =⇒ arbitrary µ introduced

* Although calculation is performed for a sphere of radius a, Laplace-Beltrami
operators are those for sphere of unitary radius

* a only comes in the combination a2Λ
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Calculation of the fluctuation determinants

Two different strategies

1 - direct calculation in terms of eigenvalues of Laplace-Beltrami ops.

2 - proper-time, as usually done

Anticipating: both calculations show that quartically and quadratically
divergent contributions to the vacuum energy usually present in the
literature are actually absent
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1 - Calculation in terms of the eigenvalues λ(s)
n

δS1l
grav =

1
2

N−2∑
n=2

[
D(2)

n log
(

λ
(2)
n − 2a2Λ + 8

)
+ D(0)

n log
(

λ
(0)
n − 2a2Λ

)
−D(1)

n log
(

λ
(1)
n − 3

)
− D(0)

n log
(

λ
(0)
n − 6

)]
+

1
2

log
(

2a2Λ
)

+ B

* UV cutoff introduced as a numerical cut (∗) N on the number of eigenvalues (N − 2
rather than N simplifies the expression)

* De Sitter solution for the classical action

adS =

√
3

Λcc

adS size of the universe =⇒ connection between N and physical cutoff scale
Λcut ∼ MP given by

Λcut ∼ MP =
N
adS

= N

√
Λcc

3

(∗) Numerical cut also introduced in Becker, Reuter, Phys.Rev.D 102 (2020) 12, 125001 and Phys.Rev.D 104 (2021) 12, 125008 ;

Ferrero, Percacci, e-Print: 2404.12357, but: different perspective, different conclusions
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Calculation in terms of the λ(s)
n cont’d

* N − 2: number of modes retained in the calculation of the determinants

* Since the eigenvalues λ̃
(s)
n of −2

(s)
a go like λ̃

(s)
n ≡ λ

(s)
n

a2 ∼ n2

a2 , the requirement
n ≤ N − 2 is not equivalent to require λ̃

(s)
n ≤ Λ2

cut

* This latter choice might seem natural, since it would amount to require that the
maximal eigenvalue λ̃

(s)
max is λ̃

(s)
max ∼ Λ2

cut

* But misleading reasoning: since λ̃
(s)
n go like a−2 =⇒ introduction of unphysical

a-dependence (on the BG g (a)
µν ) in the implementation of the cutoff

Fundamental observation to get the correct result for δS1l
grav, and to see that there are

No quartic and quadratic divergences in the vacuum energy
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Calculation in terms of the λ(s)
n cont’d

Remarkably, sum in δS1l
grav obtained in closed form (backup slides)

Expanding for N ≫ 1

δS1l
grav = −

(
Λ2

cclog N2
)

a4 + Λcc
(

−N2 + 8 log N2
)

a2

+
N4

24
(

−1 + 2 log N2
)

+
N2

36
(

203 − 75 log N2
)

−
779
90

log N2 + B

+
1
2

log
(

2a2Λcc
)

+ F(a2Λcc) + O
(

N−2
)

where F(a2Λ) contains only UV-finite terms (no dependence on N)

Using Λcut ∼ MP = N
adS

= N
√

Λcc
3

δS1l
grav = −

(
Λ2

cc log
3Λ2

cut

Λcc

)
a4 +

(
−3Λ2

cut + 8Λcc log
3Λ2

cut

Λcc

)
a2

+
3Λ4

cut

8Λ2
cc

(
−1 + 2 log

3Λ2
cut

Λcc

)
+

Λ2
cut

12Λcc

(
203 − 75 log

3Λ2
cut

Λcc

)
−

779
90

log
3Λ2

cut

Λcc
+ B

+
1
2

log
(

2a2Λcc
)

+ F(a2Λcc) + O
(

Λ−2
cut

)
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2 - Calculation with proper-time

Being (−2
(s)
a=1 − α) dimensionless =⇒ determinants regularized in terms of a

dimensionless proper-time τ (lower cut: number Npt ≫ 1)

deti (−2
(s)
a=1 − α) = e

−
∫ +∞

1/N2
pt

dτ
τ

K(s)
i (τ)

; K(s)
i (τ) =

+∞∑
n=s+i

D(s)
n e−τ

(
λ

(s)
n −α

)
After integration over τ , sum over n performed with EML sum formula

nf∑
n=ni

f (n) =

∫ nf

ni

dx f (x) +
f (nf ) + f (ni )

2
+

p∑
k=1

B2k

(2k)!

(
f (2k−1)(nf ) − f (2k−1)(ni )

)
+ R2p

p is an integer, Bm are Bernoulli numbers, R2p is the rest given by

R2p =
∞∑

k=p+1

B2k

(2k)!

(
f (2k−1)(nf ) − f (2k−1)(ni )

)
=

(−1)2p+1

(2p)!

∫ nf

ni

dx f (2p)(x)B2p(x − [x ])

Bn(x) are the Bernoulli polynomials, [x ] the integer part of x , and f (i) the i-th derivative of f with
respect to its argument
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Calculation with proper-time cont’d
Expanding for Npt ≫ 1

δS1l
grav = −

(
Λ2

cclog N2
pt

)
a4 + Λcc

(
−N2

pt + 8 log N2
pt

)
a2

−
N4

pt

12
+

17
3

N2
pt −

1859
90

log N2
pt + B

+
1
2

log
(

2a2Λcc
)

+ G(a2Λcc) + O
(

N−2
pt

)
G(a2Λ) contains UV-finite terms (no dependence on Npt). As before, connection
between Npt and dimensionful cutoff Λpt given by

Λpt ≡
Npt

adS

=

√
Λcc

3
Npt =⇒

δS1l
grav = −

(
Λ2

cc log
3Λ2

pt

Λcc

)
a4 +

(
−3Λ2

pt + 8Λcc log
3Λ2

pt

Λcc

)
a2

−
3Λ4

pt

4Λ2
cc

+
17Λ2

pt

Λcc
−

1859
90

log
3Λ2

pt

Λcc
+ B

+
1
2

log
(

2a2Λcc
)

+ G(a2Λcc) + O
(

Λ−2
pt

)
The two methods give the same result

... to be compared with ...
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...
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Coefficients of a4 and a2 identify the one-loop corrections to Λcc
G and 1

G

Λ1l
cc

G1l =
Λcc

G

(
1−

3GΛcc

π
log

3Λ̃2

Λcc

)
+ finite

1
G1l =

1
G

[
1 +

G
2π

(
3Λ̃2 − 8Λcc log

3Λ̃2

Λcc

)]
+ finite

* Λ̃ is equivalently either Λcut or Λpt (∼ MP)

* Unexpected result: only logarithmic corrections to ρ = Λcc
8πG

* Taking for G the natural value G ∼ M−2
P we see that quantum corrections do not

spoil the naturalness of this relation

No naturalness problem with the renormaliz. of the Newton constant

G ∼ G1l ∼
1

M2
P
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Vacuum energy

Λ1l
cc

G1l =
Λcc

G

(
1−

3GΛcc

π
log

3Λ̃2

Λcc

)
Quantum correction to the vacuum energy ρ = Λcc

8πG goes like

log MP rather than M4
P

* Usual result: ρ ∼ M4
P =⇒ bare value of ρ ∼ M4

P with a coefficient that must be
enormously fine-tuned for it to cancel (quite exactly) the one-loop generated M4

P
correction

* Our result: loop corrections → only mild (log) correction to ρ =⇒

In pure gravity no naturalness problem arises: the bare cosmological constant Λcc

does not need to be ∼ M2
P . We may naturally have Λcc ≪ M2

P , and so

Λ1l
cc ∼ Λcc
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Incorrect identification of the cutoff
What is at the origin of our unexpected result?

Why usually quartic (∗) and quadratic divergences found?

δS1l
grav = −

(
Λ2

cc log N2
pt

)
a4 + Λcc

(
−N2

pt + 8 log N2
pt

)
a2

−
N4

pt

12
+

17
3

N2
pt −

1859
90

log N2
pt

Connect for a moment Npt and Λpt through

Λpt =
Npt

a
(rather than through Λpt =

Npt

adS

)

which corresponds to the (incorrect) identification of Λpt with the maximal eigenvalue
λ̃

(s)
max ... then for δS1l

grav we obtain

δS1l
grav = −

[
Λ2

cc log
(

Λ2
pt a2

)]
a4 + Λcc

[
−Λ2

pt a2 + 8 log
(

Λ2
pt a2

)]
a2

−
Λ4

pt

12
a4 +

17
3

Λ2
pt a2 −

1859
90

log
(

Λ2
pt a2

)
(∗) absence of quartic divergences also noted in Donoghue, Phys.Rev.D 104 (2021) 4, 045005
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Trivially rewritten as

δS1l
grav = −

[
Λ4

pt

12
+ ΛccΛ2

pt + Λ2
cc log

(
Λ2

pt a2
)]

a4 +
[17

3
Λ2

pt + 8Λcc log
(

Λ2
pt a2

)]
a2

−
1859
90

log
(

Λ2
pt a2

)
.

known result found with heat-kernel (Taylor, Veneziano ; Fradkin, Tseytlin)

* Implementing the cut in the fluctuation determinants taking as physical cutoff the
maximal eigenvalues λ̃

(s)
max introduces in δS1l

grav spurious, unphysical dependence on g (a)
µν

* Connection between Npt and Λpt must be realised through adS (size of the universe)
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...
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Matter contribution
Free real scalar field ϕ of mass m on the grav. background g (a)

µν (sphere of radius a)

S =
πΛ
3G

a4 −
2π
G

a2 +

∫
d4x

√
g (a)

[
1
2

g (a) µν
∂µϕ∂νϕ +

1
2

m2
ϕ

2
]

* Write ϕ(x) = Φ + η(x), Φ constant background. Effective gravitational action Seff
grav

with quantum fluctuations of ϕ included

Seff
grav =

πΛ
3G

a4 −
2π

G
a2 + δSgrav

with δSgrav given by

e−δSgrav =
∫ ∏

x

[(
g (a) 00(x)

) 1
2

(
g (a)(x)

) 1
4 dη(x)

]
e−

∫
d4x

√
g(a)[− 1

2 η2η+ 1
2 m2η2]

* As before
(

g (a) 00(x)
) 1

2
(

g (a)(x)
) 1

4 from integration over conjugate momenta (Fradkin,

Vilkovisky). Since g (a)
µν = a2g (1)

µν =⇒(
g (a) 00(x)

) 1
2

(
g (a)(x)

) 1
4 = a

(
g (1) 00(x)

) 1
2

(
g (1)(x)

) 1
4 , no dimensionful parameter in

e−δSgrav = N
∫ ∏

x

[
d η̂(x)

]
e−

∫
d4x

√
g(1)

[
− 1

2 η̂
(
2

(0)
a=1

)
η̂ + 1

2 a2m2 η̂ 2
]
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Matter contribution cont’d
* −2

(0)
a=1 : Laplace-Beltrami operator for sphere of unitary radius

* η̂ ≡ aη : dimensionless fluctuation field

* N : inessential a-independent constant

Expanding η̂(x) in terms of the eigenfunctions2 ϕ
(i)
n (x) (i degeneracy index and

n = 0, 1, . . . ) of −2
(0)
a=1: η̂ =

∑
n,i a(i)

n ϕ
(i)
n

e−δSgrav = N
∫ ∏

n,i

da(i)
n e

− 1
2

∑
n,i

[
a(i)

n

]2(
λ

(0)
n +a2m2

)
and then (C inessential a-independent constant)

Seff
grav =

πΛ
3G

a4 −
2π

G
a2 +

1
2

log
[

det
(

−2
(0)
a=1 + a2m2

)]
+ C .

2The ϕ
(i)
n are normalized as

∫
d4x

√
g (1) ϕ

(i)
n (x) ϕ

(j)
m (x) = δij δnm.
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Matter contribution cont’d

* Calculate determinant with direct product of λ
(0)
n up to n = N − 2 as before, and

expand for N ≫ 1

Seff
grav =

π

3

(
Λ
G

−
m4

8π
log N2

)
a4 − 2π

[
1
G

−
m2

24π

(
N2 + 2 log N2

)]
a2

+
N4

48
(

−1 + 2 log N2
)

−
N2

72
(

13 + 3 log N2
)

−
29
180

log N2 + C

+ H(a2m2) + O
(

N−2
)

* Similarity with the result obtained in the pure gravity case : evident

* Consider the vacuum energy term. Once again : if N correctly related to Λcut ∼ MP
through Λcut ∼ MP = N

adS
= N

√
Λcc
3 =⇒ ρ = Λcc

8πG receives only

mild logarithmically divergent correction

δ

(Λcc

G

)
= −

m4

8π
log

3Λ2
cut

Λcc
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... But ...

If again we perform the incorrect replacement of N as N = a Λcut

=⇒ spurious quartically and quadratically divergent terms generated

For instance:
−N4

48 −→ −Λ4
cut

48 a4

Quartically divergent contribution to Λcc
G

N2

12 m2 a2 −→ Λ2
cut

12 m2 a4

Quadratically divergent contribution to Λcc
G
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Conclusions

The absence of quartic and quadratic divergences in
our result for the vacuum energy

even when the presence of matter is taken into account
possibly a progress towards the solution of the CC problem

Naturally
the question of how to dispose of the terms m4 log Λcut

needs to be further investigated
maybe along the lines put forward in the present work
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THANKS FOR YOUR ATTENTION



ADDITIONAL SLIDES



Comparison with Becker-Reuter, PRD 102 (2020) 12 - PRD 104 (2021) 12

and Ferrero-Percacci, e-Print: 2404.12357
Consider the modified Einstein equation at one-loop Becker, Reuter PRD 104 (2021) 12

3G
π

a
d

da
Γ1l

grav(a) = 4Λcca4 − 12a2 +
3G
π

a
d

da
δS1l

grav(a) = 0 (gµν = g (a)
µν)

* BRST-invariant Fujikawa measure (or measure not fully considered)[
Du(h)Dv∗

ρ Dvσ

]
≡

∏
x

[(
g(a)(x)

)−2︸ ︷︷ ︸
∝ a−16

( ∏
α≤ β

dhαβ (x)
)(∏

ρ

dv∗
ρ (x)

)(∏
σ

dvσ (x)
)]

=⇒ δS1l
grav(a) ∼ N4 log (aµ) =⇒ solution āN ∼ N

√
M−1

P Λ−1
cc

* Fradkin-Vilkovisky measure[
Du(h)Dv∗

ρ Dvσ

]
≡

∏
x

[
g(a) 00(x)

(
g(a)(x)

)−1︸ ︷︷ ︸
∝ a−10

( ∏
α≤ β

dhαβ (x)
)(∏

ρ

dv∗
ρ (x)

)(∏
σ

dvσ (x)
)]

=⇒ δS1l
grav(a) does not contain N4 log (aµ) =⇒ NO āN solution

Similar considerations apply to the results found in Becker-Reuter, PRD 102 (2020) 12, and
Ferrero-Percacci, e-Print: 2404.12357



Why Fradkin-Vilkovisky measure?
Free real, massless scalar field ϕ in grav. background gµν = (1 + h(x)) ηµν√

−gL =
1
2

(1 + h(x)) ∂µϕ ∂
µ
ϕ (Donoghue, PRD 104 (2021) 4)

Of the kind

L =
1
2

[
δ

ab + Ḡab(π)
]
∂µπ

a
∂

µ
π

b
(Gerstein, Jackiw, Lee and Weinberg, “Chiral loops”, PRD 3, 2486 (1971))

* Canonical quantization (using GJLW result)

1. HI = −
1
2

h(x)∂µϕ̃ ∂
µ
ϕ̃ +

1
2
∂0ϕ̃

[
h2

1 + h

]
∂0ϕ̃ ⊕ non-std prop. ∆µν (q) =

iqµqν

q2 + iϵ
− iηµ0ην0

2. HI = −
1
2

h(x)∂µϕ̃ ∂
µ
ϕ̃ +

i
2

δ
(4)(0) log (1 + h(x)) ⊕ std Feynman rules

* Functional methods (Honerkamp and Meetz, “Chiral-invariant perturbation theory”, PRD 3, 1996 (1971))

path integral measure from integration over conjugate momenta

Du(ϕ) =
∏

x

(1 + h(x))1/2 dϕ(x) ⇐⇒ ∆L = −
i
2

δ
(4)(0) log (1 + h(x))

same as that in canonical quantization



Why Fradkin-Vilkovisky measure? Cont’d
For generic metric gµν (Donoghue, PRD 104 (2021) 4)

Du(ϕ) =
∏

x

(− det gµν (x))1/8 dϕ(x)

Measure we use (from integration over conjugate momenta) (Fradkin-Vilkovisky, Unz)

Du(ϕ) =
∏

x

[(
g 00(x)

)1/2
(− det gµν (x))1/4dϕ(x)

]
Fujikawa measure

Du(ϕ) =
∏

x

[
(− det gµν (x))1/4 dϕ(x)

]
∗ gµν = (1 + h(x)) ηµν ⇒ (− det gµν (x))1/8 =

(
g 00(x)

)1/2
(− det gµν (x))1/4 = (1 + h(x))1/2

(− det gµν (x))1/4 = 1 + h(x) DIFFERENT!

∗ Sphere gµν = g (a)
µν =⇒

(
− det g (a)

µν (x)
)1/8

and
(

g (a) 00(x)
)1/2 (

− det g (a)
µν (x)

)1/4
both ∼ a

(− det gµν (x))1/4∼ a2



Additional comments

1
2 log

(
2a2Λcc

)
and G(a2Λcc) are negligible O(1) contributions to δS1l

grav

The constant terms (proportional to a0) in principle could be interpreted
as corrections to

∫
d4x √g R2 rather then as constants to be discarded

... Due to the high symmetry of the background considered (sphere), it is
impossible to distinguish between constant terms and corrections to R2

... since our universe seems to be well described by the Einstein-Hilbert
action (with cosmological constant) even at large energy scales, we rather
expect these terms to be interpreted as inessential constants ...

This question should be further investigated ...



Expansion of ĥµν, v ∗
ρ and vσ

We indicate with hµν(i)
n (transverse-traceless), ξ

µ(i)
n (transverse) and ϕ

(i)
n

the pure spin-2, spin-1 and spin-0 eigenfunctions of the Laplace-Beltrami
operator on the sphere of unitary radius that are normalized as

δ
ij
δnm =

∫
d4x

√
g (1) hµν(i)

n (x)hm(j)
µν (x) =

∫
d4x

√
g (1) ξ

µ(i)
n (x)ξm(j)

µ (x) =

∫
d4x

√
g (1) ϕ

(i)
n (x)ϕ(j)

m (x) ,

(1)

corresponding to the eigenvalues λ
(2)
n , λ

(1)
n and λ

(0)
n respectively. The

modes {hµνn , vµνn , wµν
n , zµνn }, with

vµν
n =

[
1
2

(
λ

(1)
n − 3

)]− 1
2

∇(µ
ξ

ν)
n , n = 2, . . . ,

wµν
n =

[
λ

(0)
n

(
3
4
λ

(0)
n − 3

)]− 1
2

(
∇µ∇ν −

1
4

g (1) µν
2

)
ϕn , n = 2, . . . ,

zµν
n =

1
2

g (1) µν
ϕn , n = 0, 1, 2, . . . , (2)

of which we do not write explicitly the degeneracy indexes form the
orthonormal basis for symmetric tensors.



Moreover, defining the longitudinal vector modes

lµ
n =

(
λ

(0)
n

)− 1
2 ∇µ

ϕn , n = 1, 2, . . . , (3)

the latter, together with the transverse modes ξµn , form the orthonormal
basis for vectors.
Expand the graviton field ĥ µν as [8]

ĥ µν =
∞∑
n=2

anhµν
n +

∞∑
n=2

bnvµν
n +

∞∑
n=2

cnwµν
n +

∞∑
n=0

enzµν
n (4)

ĥ ≡ g (1)
µν ĥ µν = 2

∞∑
n=0

enϕn , (5)

and the ghost field vµ as

vµ =
∞∑
n=1

gn ξ
µ
n +

∞∑
n=1

fn lµ
n (6)

so that we have



64πG (S2 + Sgf) =
∞∑
n=2

a2
n

[
λ

(2)
n − 2a2Λ + 8

]
+

∞∑
n=2

b2
n

[
ξ

−1
(
λ

(1)
n − 3

)
− 2a2Λ + 6

]
+

∞∑
n=2

c2
n

[
ξ

−1
(

3
4
λ

(0)
n − 6

)
−
λ

(0)
n

2
− 2a2Λ + 6

]
+

∞∑
n=0

e2
n

[
−3 + ξ−1

2
λ

(0)
n + 2a2Λ

]
+

∞∑
n=2

2encn(ξ−1 − 1)
[
λ

(0)
n

(
3
4
λ

(0)
n − 3

)] 1
2

(7)

32πG Sghost =
∞∑
n=1

g∗
n gn

(
λ

(1)
n − 3

)
+

∞∑
n=1

f ∗
n fn

(
λ

(0)
n − 6

)
. (8)



Therefore, the functional measure in (??) can be written as (defined as)

Dĥµν Dv∗
ρ Dvσ ≡

1
VSO(5)

∞∏
n=2

dan

∞∏
n=2

dbn

∞∏
n=2

dcn

∞∏
n=0

den

∞∏
n=2

dg∗
n

∞∏
n=2

dgn

∞∏
n=1

df ∗
n

∞∏
n=1

dfn ,

(9)
Notice that there is no integration over the zero modes g∗

1 and g1 of
Sghost [16]. The corresponding ghost fields are proportional to the ten
Killing vectors ξµ1 . These zero eigenmodes correspond to residual gauge
invariances which are not eliminated by gauge fixing in the presence of an
SO(5) spherical symmetry. Overcounting has been compensated by
inserting the explicit group-volume factor VSO(5) in Eq. (9) (see,
e.g., [17]).



Sum over the eigenvalues in closed form

F (a2Λ) = 9Λa2 −
1
6

Λ
√

8Λa2 + 9logΓ
(

7
2

−
1
2

√
8Λa2 + 9

)
a2 − 5Λψ(−2)

(
1
2

(√
8a2Λ − 15 + 7

))
a2

− 5Λψ(−2)
(

7
2

−
1
2

√
8a2Λ − 15

)
a2 − Λψ(−2)

(
1
2

(√
8Λa2 + 9 + 7

))
a2

− Λψ(−2)
(

7
2

−
1
2

√
8Λa2 + 9

)
a2 +

1
6

ΛlogΓ
(

1
2

(√
8Λa2 + 9 + 7

))√
8Λa2 + 9a2

− 5 log(120) +
49 log(A)

3
− 2

√
11
3

logΓ
(

1
2

(√
33 + 7

))
−

5
6

(
a2Λ − 5

)√
8a2Λ − 15logΓ

(
7
2

−
1
2

√
8a2Λ − 15

)
−

1
6

√
8Λa2 + 9logΓ

(
7
2

−
1
2

√
8Λa2 + 9

)
+ 3ψ(−4)(1) + 3ψ(−4)(6) + ψ

(−4)
(

7
2

−
√

33
2

)
+ ψ

(−4)
(

1
2

(√
33 + 7

))
− 5ψ(−4)

(
1
2

(√
8a2Λ − 15 + 7

))
− 5ψ(−4)

(
7
2

−
1
2

√
8a2Λ − 15

)
− ψ

(−4)
(

1
2

(√
8Λa2 + 9 + 7

))
− ψ

(−4)
(

7
2

−
1
2

√
8Λa2 + 9

)
+

15ψ(−3)(1)
2

−
15ψ(−3)(6)

2

−
1
2

√
33ψ(−3)

(
1
2

(√
33 + 7

))
−

5
2

√
8a2Λ − 15ψ(−3)

(
7
2

−
1
2

√
8a2Λ − 15

)



−
1
2

√
8Λa2 + 9ψ(−3)

(
7
2

−
1
2

√
8Λa2 + 9

)
+

33ψ(−2)(1)
4

+
33ψ(−2)(6)

4

+
49
12
ψ

(−2)
(

7
2

−
√

33
2

)
+

49
12
ψ

(−2)
(

1
2

(√
33 + 7

))
+

175
12
ψ

(−2)
(

1
2

(√
8a2Λ − 15 + 7

))
+

175
12
ψ

(−2)
(

7
2

−
1
2

√
8a2Λ − 15

)
−

13
12
ψ

(−2)
(

1
2

(√
8Λa2 + 9 + 7

))
−

13
12
ψ

(−2)
(

7
2

−
1
2

√
8Λa2 + 9

)
+

1
2
ψ

(−3)
(

7
2

−
√

33
2

) √
33 + 2logΓ

(
7
2

−
√

33
2

)√
11
3

+
5
6

(
a2Λ − 5

)
logΓ

(
1
2

(√
8a2Λ − 15 + 7

))√
8a2Λ − 15

+
5
2
ψ

(−3)
(

1
2

(√
8a2Λ − 15 + 7

))√
8a2Λ − 15

+
1
6

logΓ
(

1
2

(√
8Λa2 + 9 + 7

))√
8Λa2 + 9

+
1
2
ψ

(−3)
(

1
2

(√
8Λa2 + 9 + 7

))√
8Λa2 + 9 +

7ζ(3)
4π2 −

2
3
ζ

′(−3) −
20801
1080



g (a)
µν =


a2 0 0 0

0 a2 sin2 θ1 0 0

0 0 a2 sin2 θ1 sin2 θ2 0

0 0 0 a2 sin2 θ1 sin2 θ2 sin2 θ3
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