Probing the nature of gravity on black hole horizons

The Quantum and Gravity, 4th Int. FLAG Workshop, Catania 09/09/2024 Alessandro Pesci, INFN Bologna

outline of the talk

consider spacetime endowed with existence of a minimum length (i.e., with quadratic intervals -> finite limit at coincidence) [minimum-length metric or quantum metric or qmetric]

allow for this description to include null intervals AP 1812.01275

- Kothawala 1307.5618; Kothawala, Padmanabhan 1405.4967; JaffinoStargen, Kothawala 1503.03793
	-

apply it to black hole horizons Krishnendu N V, S. Chakraborty, A. Perri, AP (ongoing work)

minimum-length metric

Kothawala 1307.5618; Kothawala, Padmanabhan 1405.4967; JaffinoStargen, Kothawala 1503.03793

existence of a minimum length *L* affects geometry itself in the small scale (i.e., not regarded as *L*-blurring of sources in an ordinary spacetime)

 π modification introduced in the quadratic interval $\sigma^2(x, x')$ (before g_{ab}): $\sigma^2(x, x') \mapsto S(\sigma^2)$ with $S(\sigma^2) \to \epsilon L^2$ finite in the coincidence limit $x \to x'$ $(with S(\sigma^2) \approx \sigma^2$ when $|\sigma^2| \gg L^2$, *i.e.*, when *x is* far apart from *x*)

for it, one needs a metric singular everywhere: how to deal with this?

we face the unavoidable nonlocality accompanying gravity in the smallest scales convenience of nonlocal objects to describe this: use bitensors (just like

 $\sigma^2(x, x')$, which is a biscalar)

implies $g_{ab}(x') \mapsto q_{ab}(x, x') = Ag_{ab} + \epsilon(1/\alpha - A)t_a t_b$

 t_a = t angent vector

 $\alpha = \alpha(\sigma^2), A = A(\sigma^2)$ biscalars

to require $\sigma^2(x, x') \mapsto S(\sigma^2)$ with $S(\sigma^2) \to \epsilon L^2$ finite in the coincidence limit $x \to x'$ along the connecting geodesic, which such remains (with a same character) also in the new metric

q turns out to be completely fixed if a condition is additionally posed on *ab* the 2-point function *G*(*x*, *x*′) of any field (namely, this is about causality): one requires that, when spacetime is maximally symmetric, $G(\sigma^2) \mapsto \widetilde{G}(\sigma^2) = G(S(\sigma^2))$ \widetilde{G} $G(\sigma^2) = G(S(\sigma^2))$ where

> *G* and \widetilde{G} are Green functions of \Box and $\underset{x}{\sim} \widetilde{\Box}_{x'}$ resp., $\widetilde{\Pi}$ \Box *x'* and *x* $\widetilde{\Pi}$ $\Box_{x'}$ is the d'Alembertian associated to $q_{ab}(x, x')$

with

t unit tangent to connect. geod. *^a ϵ* = -/+ 1 for time/space sep.

 $\Delta(x, x') = -\frac{1}{\sqrt{2\pi\epsilon_0^2}} \det \left[-\nabla_a^{(x)} \nabla_b^{(x)} \frac{1}{2} \sigma^2(x, x') \right]$ *g*(*x*)*g*(*x*′) det $\left| - \nabla_a^{(x)} \nabla_b^{(x)} \right|$ *b* 1 2 $\sigma^2(x, x')$ $\Delta_S = \Delta(\tilde{x}, x')$ with \tilde{x} such that $\sigma^2(\tilde{x}, x') = S$ on the connecting geodesic

*q*_{ab} is singular everywhere in the $x \rightarrow x'$ limit, and $q_{ab} \approx g_{ab}$ for x, x' far apart

one gets: Kothawala 1307.5618; Kothawala, Padmanabhan 1405.4967; JaffinoStargen, Kothawala 1503.03793

 $q_{ab}(x, x') = A g_{ab} + \epsilon (1/\alpha - A) t_a t_b$

this observer at *x*' will find a finite lower bound L to $\lambda - \lambda_{x'}$ qmetric:

take $\lambda_{x'} = 0$, $\lambda \mapsto \lambda(\lambda)$, with $\tilde{\lambda} \to L$ when $\widetilde{\mathcal{U}}$ (*λ*) *λ* ˜ \rightarrow *L* when $\lambda \rightarrow 0$ $(with \lambda(\lambda) \approx \lambda$ when $\lambda \gg L)$ $\widetilde{\mathcal{U}}$ $(\lambda) \approx \lambda$ when $\lambda \gg L$

null separations what's the meaning of a finite distance limit in this case? AP 1812.01275, 2207.12155

affine *λ* = measure of distance by the canonical observer key:

we seek $q_{ab}^{(\gamma)}$ of the form $q_{ab}^{(\gamma)} = A_{(\gamma)} g_{ab} + (A_{(\gamma)} - 1/a_{(\gamma)}) (l_a n_b + n_a l_b)$ $= A_{(\gamma)} g_{ab} + (A_{(\gamma)} - 1/a_{(\gamma)}) (l_a n_b + n_a l_b)$ n_a null with l^a $n_a = -1$

from $\tilde{l}^b \overline{\nabla}_b \tilde{l}_a = 0$ *l* $b\,\widetilde{\blacktriangledown\,}$ ∇*^b* \widetilde{l} $l_a = 0$

——————————

with $\tilde{l}^a = \frac{u}{\tilde{l}^a} = l^a \frac{u}{\tilde{l}^a},$ *dλ*

with
$$
\tilde{l}^a = \frac{dx^a}{d\tilde{\lambda}} = l^a \frac{d\lambda}{d\tilde{\lambda}},
$$

and $\widetilde{\nabla}_b \tilde{v}_a = \nabla_b \tilde{v}_a - \frac{1}{2} q^{cd} (-\nabla_d q_{ba} + 2\nabla_{(b} q_{a)d}) \tilde{v}_c$

we obtain α _(*γ*) = *C dλ* $\widetilde{\wr}$ /*dλ*

, with *C* real const.

γ null

the 2-point function *G*(*x*, *x*′) diverges on *γ* we imagine to be slightly off *γ*

a) *df dσ*² *at x* ∈ *γ dx^a dλ*

we implement then the d'Alembertian condition this way:

 \widetilde{G} $G(\sigma^2) = G(S(\sigma^2))$ is solution of \widetilde{G} $G(S(\sigma^2))$ $\widetilde{\mathfrak{d}}\ \widetilde{\nabla}$ ∇*^a* \widetilde{l}^d *l a*) *dG* $\widetilde{\bm{J}}$ *dS* [|]*^λ* $\widetilde{\wr}$ $= (4 + 2\lambda)$ when

 $G(\sigma^2)$ is solution of $(4 + 2\lambda \nabla_a l^a) \frac{d^2}{d^2} = 0$ *a*) *dG* $dσ²$ | $λ$ $= 0$

$$
(4+2\tilde{\lambda}\,\widetilde{\nabla}_a\tilde{l}^a)\frac{d\tilde{G}}{dS}_{|\tilde{\lambda}} = (4+2\tilde{\lambda}\,\widetilde{\nabla}_a\tilde{l}^a)\left(\frac{d\tilde{G}}{d\sigma^2}\right)_{|\lambda=\tilde{\lambda}} = 0 \tag{1}
$$

(2)

$\widetilde{\nabla}_b \tilde{l}_a$ and the expression for $\alpha_{(\gamma)}$ we already have, eq. (1) is *d dλ* $\ln A_{(\gamma)} = 0$ *D* = spacetime dim.

using $\widetilde{\nabla}$ l_a and the expression for $\alpha_{(\gamma)}$ $4 + 2\lambda - \frac{\nabla}{a^2} \nabla_a l^a_{1\lambda} + \lambda (D-2) - \frac{\nabla}{a^2} \frac{\nabla}{a^2} \ln A_{(\gamma)} = 0$ ˜ *dλ dλ* $\widetilde{\wr}$ ∇*al a* $| \lambda + \lambda |$ $\widetilde{\wr}$ $(D - 2)$ *dλ dλ* $\widetilde{\wr}$

————————— from (2) at λ , *i.e.*, $\widetilde{\wr}$ $4 + 2\lambda \nabla_a l^a_{\ \ | \tilde{\lambda}} = 0,$ $\widetilde{\wr}$ ∇*al a* |*λ* and ∇*al a* |*λ* = *D* − 2 *^λ* [−] *^d dλ* we obtain

 $\frac{d}{dx}$ ln $\left[\frac{\lambda^2}{\tau}\left(\frac{\Delta_{\tilde{\lambda}}}{\tau}\right)^{\frac{2}{D-2}}A_{(y)}\right] = 0$ *dλ* \ln *λ*2 *λ* $\overline{\tilde{i}^2}$ Δ*λ* $\widetilde{\wr}$ $\overline{\Delta}$) 2 *D* − 2 $A_{(\gamma)}$ | = 0

$_{\tilde{\imath}}=0$ $\ln \Delta$, $\nabla_d l$ *a* |*λ* $\tilde{a} =$ $D-2$ *λ* $\frac{-\,2}{\tilde{\imath}} - \frac{d}{d\tilde{\imath}}$ *dλ* $\widetilde{\wr}$ ln Δ*^λ* ˜ ,

which is
\n
$$
A_{(\gamma)} = C' \frac{\tilde{\lambda}^2}{\lambda^2} \left(\frac{\Delta}{\Delta_{\tilde{\lambda}}} \right)^{\frac{2}{D-2}}, \quad C' > 0
$$

——————————

, *C*′> 0 const.

$= A_{(\gamma)} g_{ab} + (A_{(\gamma)} - 1/a_{(\gamma)}) (l_a n_b + n_a l_b) \approx g_{ab}$ when $\lambda \gg L$,

Then, final expression is
\n
$$
a_{(r)} = A_{(r)} g_{ab} + (A_{(r)} - 1/a_{(r)}) (l_a n_b + n_a l_b)
$$
\n
$$
a_{(r)} = \frac{1}{d\tilde{\lambda} d\lambda},
$$
\n
$$
a_{ab} \text{ singular everywhere}
$$
\n
$$
A_{(r)} = \frac{\tilde{\lambda}^2}{\lambda^2} \left(\frac{\Delta}{\Delta_{\tilde{\lambda}}}\right)^{\frac{2}{D-2}}.
$$

areas shrink to finite values

transverse metric:

$$
\tilde{h}_{ab} = A_{(\gamma)} h_{ab}
$$

$$
d^{D-2}\tilde{a}(x) = \sqrt{\det \tilde{h}_{ab}(x)} d^{D-2}a(x) = \sqrt{\det \tilde{h}_{ab}(x)}
$$

$$
= \tilde{\lambda}^{D-2} \frac{\Delta}{\Delta_{\tilde{\lambda}}} d\Omega_{(D-2)} \to L^{D-2} \frac{1}{\Delta_{\tilde{\lambda}^{\pm}}}
$$

which is finite for a given *d*Ω(*D*−2)

use on horizons

(coll. with Krishnendu N V (ICTS, Bengaluru), S. Chakraborty (IACS, Kolkata), A. Perri (Bologna))

a null geodesic

we describe the coincidence event in local Gullstrand-Painleve′ at *x*′

$$
l_p^2 = 4\pi\beta^2 \hbar
$$

hold energy E_0 to have absorption;

for energies $E < E_0$, no absorption

$$
\omega_0 = E_0/\hbar
$$

 $\delta M = \frac{1}{\delta} \kappa \left(\delta A + 4\pi \frac{\delta(J^2)}{T}\right)$ $\frac{\partial}{\partial \pi}$ *κ* (*δA* + 4*π*

(from Krishnendu)

If the BH mass is in the stellar mass range, highly spinning cases will have more constraining power

Region of parameter space that we can constrain: just from the frequency estimations

Different injected values $\{\beta, m_i, \chi_i\}$, SNR = 119

in conclusion,

-qmetric: tool to investigate imprints of quantum gravity from limit length -it can be usefully considered also for null separated events -when applied to horizons, it shows existence of a limit step in area increase -this induces $\mathcal{R} \neq 0$ below a given threshold energy E_0 $-w_0 = E_0/\hbar$ is in the sensitivity range of ground-based GW detectors for fast spinning black holes