An overview of cosmological tensions -Addressing systematics and fundamental physics solutions

Jackson Levi Said

Institute of Space Sciences and Astronomy, University of Malta

Main take away message

Why care about the Hubble constant?

Adam Riess (2019): " H_0 is the ultimate end-to-end test for Λ CDM"

- The H₀ tension is more than just a tension between CMB and the SH0ES measurement
- Its also a tension between the inverse distance ladder and high-z measurements
- We are very far from a solution!

Why do we need modifications to standard cosmology?

General Relativity and Concordance Cosmology

Λ CDM action:

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} [\mathcal{R} - 2\Lambda] + \int d^4x \sqrt{-g} \mathcal{L}_m(g_{\mu\nu}, \psi)$$

Einstein 1915: General Relativity (GR) Energy-momentum source of curvature Levi-Civita connection: Zero Torsion, Metricity

Standard model of particle physics: SU(3) × SU(2) × U(1)

Levi Said, FLAG 2024 - 4 of 42

Early Universe Concordance Cosmology

Cosmic inflation Pros: Horizon and flatness problems Cons: Fine-tuning

Anomalies and problems:

- The Lithium problem
- Hints of a closed Universe
- Large angular scale anomalies in the CMB
- Anomalously strong ISW effect
- Cosmic dipoles (cosmological principle)
- Lyman- α forest BAO anomalies
- Cosmic birefringence
- Discordance in dark matter abundance at smaller scales

Late Universe Concordance Cosmology

Anomalies and problems:

- Cold dark matter problems (core-cusp, missing satellites, satellite plane alignment)
- Dark energy in fundamental physics
- Oscillations of best-fit parameters across the sky
- Baryonic Tully-Fisher Relation

Requirements: Dark matter Dark energy

$$S = \frac{1}{16\pi G} \int d^4 x \sqrt{-g} [\mathcal{R} - 2\Lambda] + \int d^4 x \sqrt{-g} \mathcal{L}_m(g_{\mu\nu}, \psi)$$

The Hubble Tension

Levi Said, FLAG 2024 - 7 of 42

Cosmic Tensions

Indirect measures predict H_0 using Λ CDM

$$r_{s} = \int_{z_{\rm LS}}^{\infty} \frac{c_{s}(z',\rho_{b})}{H(z')} \,\mathrm{d}z'$$

Direct measures estimate H_0 using astrophysics

$$d_L(z) = (1+z) \int_0^z \frac{\mathrm{d}z'}{H(z')}$$

Levi Said, FLAG 2024 - 8 of 42

Cosmic Tensions: CMB

							10014							
Parameter	Plik best fit	Plik[1]	C	amSpec [2]	$([2] - [1])/\sigma_1$	Combined	ACDM	is a six parameter model: $(0, h^2)$						
$\overline{\Omega_{ m b}h^2}$	0.022383	0.02237 ± 0.000	0.022	229 ± 0.00015	-0.5	0.02233 ± 0.00015	- вагу	/on density ($\Omega_{\rm m} h^2$)	6000	٨				
$\Omega_{\rm c}h^2$	0.12011	0.1200 ± 0.0012 0		197 ± 0.0012	$2 -0.3 0.1198 \pm 0.0012$		- Cosr	mological dark matter density	5000 E					
100 <i>θ</i> _{MC}	1.040909	1.04092 ± 0.00031 1.0		0.00000000000000000000000000000000000	-0.2	1.04089 ± 0.00031	$(\Omega_c h^2)$							
τ	0.0543	0.0544 ± 0.007	73 0.	$.0536^{+0.0069}_{-0.0077}$	-0.1	0.0540 ± 0.0074	(120)	(1)	4000 E	-				
$\ln(10^{10}A_{\rm s})$	3.0448	3.044 ± 0.014	4 3.0	041 ± 0.015	-0.3	3.043 ± 0.014	- ACO	ustic scale angle ($100\theta_{\rm MC}$)	Υμ] 3000		-			
<i>n</i> _s	0.96605	0.9649 ± 0.004	12 0.90	656 ± 0.0042	+0.2	0.9652 ± 0.0042	- Reionization optical depth ($ au$)		D _i T	IAA	-			
$\overline{\Omega_{\rm m}h^2}$	0.14314	0.1430 ± 0.001	1 0.14	426 ± 0.0011	-0.3	0.1428 ± 0.0011	- Prim	nordial power spectrum	2000					
H_0 [km s ⁻¹ Mpc ⁻¹]	67.32	67.36 ± 0.54	67	1.39 ± 0.54	+0.1	67.37 ± 0.54	amp	$h(10^{10}A_{c})$						
Ω _m	0.3158	0.3153 ± 0.007	0.3	142 ± 0.0074	-0.2	0.3147 ± 0.0074	Di		0		99999999999999999999999999999999999999			
Age [Gyr]	13.7971	13.797 ± 0.023	3 13.5	805 ± 0.023	+0.4	13.801 ± 0.024	- Prim	nordial spectral index ($n_{\rm s}$)	600		+++++++ = 60			
σ_8	0.8120	0.8111 ± 0.006	50 0.80	091 ± 0.0060	-0.3	0.8101 ± 0.0061			300		- 30			
$S_8 \equiv \sigma_8 (\Omega_{\rm m}/0.3)^{0.5}$	0.8331	0.832 ± 0.013	3 0.8	828 ± 0.013	-0.3	0.830 ± 0.013		[╋┊╎╎╎╎╎┥╎╿╷╵╵╵╎┥┥┥┥┑╷┽╵┥╵┿╵┉╸╸ ^{┱╸} ┿┿╸╸╸╸╸	**************************************			
Z _{re}	7.68	7.67 ± 0.73	7	1.61 ± 0.75	-0.1	7.64 ± 0.74		Spectrum of CMB	-600 -		-60			
$100\theta_*$	1.041085	1.04110 ± 0.000	031 1.04	106 ± 0.00031	-0.1	1.04108 ± 0.00031		speed and of entry	2 10 3	30 500 1000 1500	2000 2500			
r_{drag} [Mpc]	147.049	147.09 ± 0.26	147	1.26 ± 0.28	+0.6	147.18 ± 0.29		temperature		ℓ				
							J	anisotropies from Planck						
Planck Collaboratio	on A&A 641	(2020) A6		7			1							
				Planck CMB	anisotronies									
CMB with Flack - Bitwister (CME) (Park III - 07) (CT (P + 1) - Prese (CME) (Park III - 07) (CT (P + 1) - Prese (CME) (Park III - 07) (CT (Park III - 07)) (Park														
An 44 LIBERTRAD 2010 M. 107 1-108 CARD HISSING TO THE STATE THE STATE OF THE STATE Address OPEN THE STATE Address OPEN THE STATE THE STATE OF THE STATE THE STATE OF THE STATE OF THE STATE OF THE STATE THE STATE OF THE STATE OF THE STATE OF THE STATE THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE THE STATE OF THE STATE THE STATE OF THE ST	H_{θ} [km s ⁻¹ M	Apc ⁻¹]				0.								
Hardword C. 2007, 1990, 497, 1997, 1977, 22 - San C. 2007, 1997, 2007,			H#1	SPI-3G CMB	anisotropies			TTP18 (7.4)		r -1				
Coloured (1996) (2007) (2017) (2017) (2017) Tomore (2017)				ACT lensing	g + BAO + BB			$H_0^{110} = 6/.4 \pm$	0.5 km s ⁻¹ N	/ipc ·				
LUSS and standard reduce - bases of USE are 2 [1]	i Indi	rect	M	ACT+Planc	k lensing + B	AO + BBN								
SSD = Copied - Borrer (Hits, M) (Hits, IA) (Camera, Man (2010), NH (1-1) - Borrer (4, 2010), ND (1-2) - Borrer (4, 2010), ND (1-2) - Borrer (4, 2010), ND (1-1) (- Borrer (4, 2010), ND (1-1) (-)	Dir	ect	H-H	Planck lensi	ng + SNe + BB	N (no r _s)	∖г							
SNL=TILLE Research 2002 (1994) 414 Additional Constraints (1994) 414 Additional Constraints (1994) 414 February 2004 (1994) 414 Damage and the solution (199		-	⊢ ●	ACT lensin	g + SNe + BB	N (no r _s)		$H_0^{\text{ACT}+\text{BAO}+\text{BBN}} = 68$	$8.3 \pm 1.1 \mathrm{km}$	$s^{-1}Mpc^{-1}$				
The Human Control and A (1) (1) Band Human (Human Control (H) (1) (1) Yusan (H) (H) (1) (1) (1) Si (Nila-Miraya (Human (n) (Miraya (1) (1)))			I	ACT+Planc	k lensing + S	Ne + BBN (no r _s)	N L	0		<u> </u>				
Balaction of a USE (B Mar 1) MT (B MAR 1) Balaction of a USE (B MAR 1) MT (B MAR 1) Balaction of a USE (B MAR 1) MT (B MAR 1) Galaxy (G MAR 1) MT (B MAR 1) On Marce (G MAR 1) MT (B MAR 1) On Marce (G MAR 1)				Direct: SNe	Cepheid-calibra	ated								
Andragene (2010) 2012 [] () Namer - Province (2010) 2014 (2014) Table (2014) 2014 (2014) Konstance (2016) 2014 (2014)			Heri	Direct: SNe	TRGB-calibrate	d		TACT+P18+BAO+BBN		-1 1 -1				
harmen Mong, Gai Gori, Hi ; 21 Hi ; piper - Pranchi Americk, GHI (11), Wang, SHI (11), Landing related annu model opportung - Landing related annu model opportung -				Direct: TDC	OSMO Strong L	ensina		$H_0^{\text{ACT}+110+\text{DAC}+\text{DBN}} =$	68.1 <u>+</u> 1.0 k	m s ⁻¹ Mpc ⁻¹				
Bare et al. 2005; T202003 79-31 4 Bare et al. 2005; T2020045 79-31 4 Million et al. 2005; T2020045 79-31 2 Million et al. 2005; T2020045 79-32 5 Gare et al. 2007; T274 5 Gare et al. 2007; T274 5 Gare et al. 2007; T274 5 Million et al. 2007;				Direct: TDCC	OSMO Strong L	ensing Alt								
Thing and USER, BEACHTON 112					Sand Strong L	choing Alt.	ACT Co	ollaboration Astrophys. J. 962 (20	24) 2, 113					
Managina at (1997) (VER) (VER) (VER) (VER) Managina at (1997) (VER)			60 70 8	30						Said FLAG 2024	9 of 12			
60	65 70 75 80	85	$ H_0 (km/s/Mpc)$:)					LEVI	Jaiu, I LAU 2024 -	5 01 42			
			•				-							

Cosmic Tensions: BBN

Cosmic Tensions: SHOES Result

Cosmic Tensions: Tip of the Red Giant Branch

Cosmic Tensions in recent years

What are possible solutions?

Attempts at a solution

Model	$\Delta N_{ m param}$	M_B	Gaussian Tension	$Q_{\rm DMAP}$ Tension		$\Delta \chi^2$	ΔAIC		Finalist	The	e H ₀ Oly What t
ΛCDM	0	-19.416 ± 0.012	4.4σ	4.5σ	X	0.00	0.00	X	X	1.	the SH
$\Delta N_{ m ur}$	1	-19.395 ± 0.019	3.6σ	3.8σ	X	-6.10	-4.10	X	X		2018 +
SIDR	1	-19.385 ± 0.024	3.2σ	3.3σ	X	-9.57	-7.57	\checkmark	√ ③	2.	How do
mixed DR	2	-19.413 ± 0.036	3.3σ	3.4σ	X	-8.83	-4.83	X	X		measu
DR-DM	2	-19.388 ± 0.026	3.2σ	3.1σ	X	-8.92	-4.92	X	X	3.	Does tl
$SI\nu + DR$	3	$-19.440\substack{+0.037\\-0.039}$	3.8σ	3.9σ	X	-4.98	1.02	X	X		better
Majoron	3	$-19.380^{+0.027}_{-0.021}$	3.0σ	2.9σ	\checkmark	-15.49	-9.49	\checkmark	√ ②		
primordial B	1	$-19.390\substack{+0.018\\-0.024}$	3.5σ	3.5σ	X	-11.42	-9.42	\checkmark	√ ③		
varying m_e	1	-19.391 ± 0.034	2.9σ	2.9σ	\checkmark	-12.27	-10.27	\checkmark	V 🐠		
varying $m_e + \Omega_k$	2	-19.368 ± 0.048	2.0σ	1.9σ	\checkmark	-17.26	-13.26	\checkmark	√ 🌖		
EDE	3	$-19.390\substack{+0.016\\-0.035}$	3.6σ	1.6σ	\checkmark	-21.98	-15.98	\checkmark	√ ②		
NEDE	3	$-19.380\substack{+0.023\\-0.040}$	3.1σ	1.9σ	\checkmark	-18.93	-12.93	\checkmark	√ ®		
EMG	3	$-19.397\substack{+0.017\\-0.023}$	3.7σ	2.3σ	\checkmark	-18.56	-12.56	\checkmark	√ ②		
CPL	2	-19.400 ± 0.020	3.7σ	4.1σ	X	-4.94	-0.94	X	X		
PEDE	0	-19.349 ± 0.013	2.7σ	2.8σ	\checkmark	2.24	2.24	X	X		
GPEDE	1	-19.400 ± 0.022	3.6σ	4.6σ	X	-0.45	1.55	X	X		
$\rm DM \rightarrow \rm DR + \rm WDM$	2	-19.420 ± 0.012	4.5σ	4.5σ	X	-0.19	3.81	X	X		
$\rm DM \rightarrow \rm DR$	2	-19.410 ± 0.011	4.3σ	4.5σ	X	-0.53	3.47	X	X		

mpics:

L.	What tension does a model have with
	the SH0ES result using a baseline Planck
	2018 + BAO + Pantheon best fit?
2.	How does the inclusion of the SH0ES

rement impact this fit?

3.	Does this inclusion make the best fit
	better than Λ CDM or worse?

Schöneberg, N. et al. Phys. Rept., 984 (2022) 1

Early vs local measurement approaches

$$\theta_{s} = \frac{r_{s}(z_{\text{LS}})}{D_{A}(z_{\text{LS}})} = \frac{\int_{z_{\text{LS}}}^{\infty} c_{s}(z,\rho_{b}) H^{-1}(z') dz'}{\int_{0}^{z_{\text{LS}}} H^{-1}(z') dz'}$$

Early-Universe new physics (r_s)

- Considering the angular size of the sound horizon

$$\theta_{\rm s} \sim \frac{r_{\rm s}}{1/H(z_{\rm late})} \sim r_{\rm s} H_0$$

By decreasing r_s , we can increase H_0 , or so one would expect

Late-Universe new physics (D_A)

Keep early Hubble evolution unchanged and modify latetime evolution of H(z)

This is very difficult to do provided BAO, SnIa and CC data

Late-Universe new physics

Possible late-Universe solutions with new physics (that give high H_0 values with CMB):

- Graduated Dark Energy Akarsu, Ö., Barrow, J. D., Escamilla, L. A., and Vazquez, J. A. 2020
- Late-time interacting dark sector Gariazzo, S., Di Valentino, E., Mena, O., and Nunes, R. C. 2022
- Decaying dark matter Vattis, K., Koushiappas, S. M., Loeb, A 2020
- Decaying dark energy Li, X., Shafieloo, A., Sahni, V., and Starobinsky, A. A. 2019
- Negative dark energy density Poulin V., Boddy, K. K., Bird, S., and Kamionkowski, M 2018
- Phenomenologically Emergent Dark Energy Li, X., and Shafieloo, A. 2020
- Running vacuum models Sola J., Gomez-Valent, A., and de Cruz Perez, J. 2017

BAO constrain $\theta_s \sim r_s H_0$, anchoring r_s (early Universe) leaves few options for inferring H_0

Early-Universe new physics

Early-Universe physics concept:

- Fix θ_s (CMB peaks unchanged) so that $r_s \sim 1/H_0$ -
- Lower r_s which will increase pre-CMB expansion rate
- Do not change $D_A \propto 1/H_{\text{Late}}(z)$, so modifications in the late Universe are not needed

Early Universe Dark Energy (EDE)

- **Motivation**: Decrease the sound horizon by an early Universe dark component that is active up to roughly matter-radiation equality
- EDE continuity equation implies energy evolution $\rho_{\rm EDE}(a) = \rho_{\rm EDE,0} \ e^{3 \int_a^1 [1+w_{\rm EDE}(a)] da/a}$ This defines the **EDE density parameter** $f_{\rm EDE} = \rho_{\rm EDE}/\rho_{\rm Crit}$
- This can be parametrized through the EoS $1 \pm w_{c}$

$$w_{\text{EDE}}(a) = \frac{1 + w_f}{1 + (a_c/a)^{3(1+w_f)}} - 1$$

• The critical scale factor sets the scale for EDE:

 $a \ll a_c \rightarrow \text{cosmic expansion with } w_{\text{EDE}} \rightarrow -1$ $a \gg a_c \rightarrow \text{Dilutes as } a^{-3(1+w_f)}$ Example: $V(\phi) = \phi^{2n} \Rightarrow w_f = (n-1)/(n+1)$

EDE Models

• Axion-like EDE (axEDE):

$$V = m^2 f^2 \left[1 - \cos\left(\frac{\phi}{f}\right) \right]^n$$

• Rock 'n Roll EDE (RnR EDE):

$$V = V_0 \left(\frac{\phi}{M_{\rm Pl}}\right)^{2n} + V_{\Lambda}$$

• Acoustic EDE (ADE):

+
$$w_{\text{ADE}} = \frac{1 + w_f}{\left[1 + (a_c/a)^{3(1+w_f)/p}\right]^p}$$

• New EDE (NEDE):

$$V(\psi,\phi) = \frac{\lambda}{4}\psi^4 + \frac{1}{2}\beta M^2\psi^2 - \frac{1}{3}\alpha M\psi^3 + \frac{1}{2}m^2\phi^2 + \frac{1}{2}\gamma\phi^2\psi^2$$

• EDE coupled to DM (EDS):

$$V(\phi, a) = V(\phi) + \rho_{\rm DM}(a)$$

• α -attractors EDE (α -EDE):

$$V = \Lambda + V_0 \frac{(1+\beta)^{2n} \tanh(\phi/\sqrt{6\alpha}M_{\rm Pl})^{2p}}{\left[1+\beta \tanh(\phi/\sqrt{6\alpha}M_{\rm Pl})\right]^{2n}}$$

Levi Said, FLAG 2024 - 20 of 42

The problem with EDE

Levi Said, FLAG 2024 - 21 of 42

Modified Gravity through Lovelock's Theorem

Levi Said, FLAG 2024 - 22 of 42

The Modified Gravity Landscape

What about other tensions on the rise?

S_8 Tension

How can machine learning help?

Horndeski Gravity

Horndeski Gravity: Produces the most general second-order theory that contains only one scalar field (in standard gravity)

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} [\mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4 + \mathcal{L}_5]$$

where

$$\begin{aligned} \mathcal{L}_{2} &= G_{2}(\phi, X) \\ \mathcal{L}_{3} &= G_{3}(\phi, X) \Box \phi \\ \mathcal{L}_{4} &= G_{4}(\phi, X)R + G_{4,X}(\phi, X) \big[(\Box \phi)^{2} - \phi_{;\mu\nu} \phi^{;\mu\nu} \big] \\ \mathcal{L}_{5} &= G_{5}(\phi, X) G_{\mu\nu} \phi^{;\mu\nu} - \frac{1}{6} G_{5,X}(\phi, X) \big[(\Box \phi)^{3} + 2\phi_{;\mu}^{\ \nu} \phi_{;\nu}^{\ \alpha} \phi_{;\alpha}^{\ \mu} - 3\phi_{;\mu\nu} \phi^{;\mu\nu} \Box \phi \big] \end{aligned}$$

Example classes of models

Quintessence models

$$G_2 = X - V(\phi), G_3 = C,$$

 $G_4 = 1/2, G_5 = 0$

Background equations:

$$3H^{2} = \rho + \frac{\dot{\phi}^{2}}{2} + V(\phi)$$

2 $\dot{H} + 3H^{2} = -p - \frac{\dot{\phi}^{2}}{2} + V(\phi)$
 $\ddot{\phi} + 3H \dot{\phi} + V'(\phi) = 0$

Equation of State parameter:

$$w_{\phi} = \frac{\dot{\phi}/2 - V}{\dot{\phi}/2 + V}$$

Designer Horndeski models

$$G_2 = K(X), G_3 = G(X),$$

 $G_4 = 1/2, G_5 = 0$

Background equations:

$$3H^{2} = \rho - K(X) + 2XK_{X} + 3H\dot{\phi}^{2}G_{X}$$

$$2\dot{H} + 3H^{2} = -p - K(X) + 2X\ddot{\phi}G_{X}$$

$$\ddot{\phi}[\dot{\phi}(3H(G_{XX}\dot{\phi}^{2} + G_{X}) + K_{XX}\dot{\phi}) + K_{X}]$$

$$+ 3 \dot{\phi} \left(G_X \dot{H} \dot{\phi} + 3 G_X H^2 \dot{\phi} + H K_X \right) = 0$$

Equation of State parameter: $w_{\phi} = -1 + \frac{J\sqrt{2X} \left(H^2 - H_0^2(1 - \Omega_m)\right)}{3H_0^4 \Omega_m(1 - \Omega_m)} - \frac{2J\sqrt{2X} (\dot{\phi}K_X + 3H \ \dot{\phi}^2 G_X)(1 + z)HH'}{9H_0^4 \Omega_m(1 - \Omega_m)}$ where $J = \dot{\phi}K_X + 3H \ \dot{\phi}^2 G_X$ Levi Said, FLAG 2024 - 28 of 42

Artificial Neural Networks (ANNs)

Designing the ANN

<u>Risk</u> – Optimizes the number of hidden layers and neurons in an ANN

$$\operatorname{risk} = \sum_{i=1}^{N} (\operatorname{Bias}_{i}^{2} + \operatorname{Variance}_{i}) = \sum_{i=1}^{N} \left(\left[H_{Obs}(z_{i}) - H_{pred}(z_{i}) \right]^{2} + \sigma_{H}^{2}(z_{i}) \right)$$

- Loss Balances the number of iterations a system needs to predict the observational data
 - 1. L1 (Least absolute deviation)

$$L1 = \sum_{i=1}^{N} \left| H_{Obs}(z_i) - H_{pred}(z_i) \right|$$

- 2. Smoothed L1 (SL1)
- 3. Mean Square Error (MSE)

$$MSE = \frac{1}{N} \sum_{i=1}^{N} \left(H_{Obs}(z_i) - H_{pred}(z_i) \right)^2$$

Levi Said, FLAG 2024 - 30 of 42

Using the ANN

Dialektopoulos, K. et al. Phys. Dark Univ. 43 (2024) 101383

Levi Said, FLAG 2024 - 31 of 42

Quintessence Models

$$V(\phi) = \dot{H} + 3H^2 - \frac{\rho - p}{2} \\ \dot{\phi}^2 = -2\dot{H} - (\rho - p)$$

Levi Said, FLAG 2024 - 32 of 42

Designer Horndeski Models

Using machine learning to probe systematics

SNal Distances

ANN-Driven constraints on M_B

A possible late-time transition of M_B

Levi Said, FLAG 2024 - 37 of 42

What are we doing in CosmoVerse?

CA21136 CosmoVerse

Main Challenge: Understand the nature of cosmic tensions and probe possible solutions using novel statistical approaches and fundamental physics

CosmoVerse@Krakow 2024

CosmoVerse@Lisbon 2023

Levi Said, FLAG 2024 - 39 of 42

CA21136 CosmoVerse – Current Activities

CA21136 CosmoVerse - 2025

CosmoVerseWorkshop@Naples 2025 – 21-23 May

CosmoVerse@Istanbul 2025 – 24-26 June

Thank You

