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Wilson - Effective Field Theory paradigm

Theory at Λ: SΛ → Theory at Λ/2: SΛ/2 → ... → Γ
Progressive evaluation of fluctuations, physical running scale Λ → Λ/2
→ Λ/4 → Λ/8 → ...
Piling up of fluctuations → Evolution of parameters

Theoretical foundation of EFT paradigm: any QFT is an EFT

• Contain an ultimate UV scale Λ
• E > Λ: UV completion (microscopic fluctuations)
• E < Λ: QFT effective, EFT (persistent fluctuations on all scales)
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Renormalized theory

Renormalized theory: defined around a fixed point (critical surface)
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In any dimesion: ..., D = 3, D = 4, D = 4 + d ...
D = 3 dimensions : Wilson-Fisher D = 4 dimensions : AF

WF
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Also for theories with D > 4 dimesions ... in particular...
Kaluza-Klein theories: D = 4 + d
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EFTs with compact dimensions : D = 4 + d

• Field Theories with compact extra dimensions are ubiquitous

• Typically studied as 4D theories with infinite∗ towers of 4D states:

mn = fn mKK

• Surprising UV-softness :

Vacuum Energy / Effective Potential @ 1l ∼ m4
KK

V1l with cutoff Λ for the 5D momentum p̂ : independent mode approximation of Uk (ϕ) in LPA

How is this possible? Why not ∼ Λ4?

∗ Sometimes truncated in a way that is equivalent (see later)
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Example : Scherk-Schwarz
5D SUSY theory S(5) defined on multiply connected spacetime M4 × S1

• Different R-charges for superpartners (i = b, f )

Ψi(x , z + 2πR) = e2πiqi Ψi(x , z) ⇒ Ψi(x , z) =
+∞∑

n=−∞

ψi,n(x)e i n+qi
R z

√
2πR∫

dz L(5) → L(4) infinite tower of KK fields, m2
i,n ∝ (n+qi )2

R2 ≡ (n + qi)2 m2
KK

• 4D “masses” mismatch: effective 4D non-local soft SUSY breaking

Higgs field ϕ : ϕ0 , or 4D brane field , or . . .

Effective 4D quadratic operator

M2
i,n(ϕ) = m2(ϕ) + (n + qi)2

R2

m: same for boson and fermion superpartners, q: different
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One-loop Higgs Effective Potential (4D calculation)

V (4)
1l (ϕ) = 1

2
∑

a

∑
ia

(−1)δia,fa

∞∑
n=−∞

∫ d4p
(2π)4 log

(
p2 + m2

a(ϕ) +
(n + qia

R

)2
)

One way of doing the calculation (not the only one)∗:
• (First) infinite sum; (then) integrate d4p with cutoff Λ

Antoniadis, Dimopoulos, Pomarol, Quiros/Delgado, Pomarol, Quiros/Barbieri, Hall, Nomura/Arkani-Hamed, Hall, Nomura, Smith, Weiner

Each tower contributes :

V (4)
1l (ϕ) = R

(
m2Λ3

48π − m4Λ
64π + m5

60π

)
−

∞∑
k=1

e−2πkmR(2πkmR(2πkmR + 3) + 3) cos(2πkq/R)
64π6k5R4

∗ Other methods, Proper time (Antoniadis, Quiros), Pauli-Villars (Contino, Pilo), Thick brane (Delgado, von

Gersdorff, John, Quiros), all give the same result, see later
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A closer look to this potential
From each tower the Higgs Potential receives the contribution

V (4)
1l (ϕ) = R

(
m2Λ3

48π − m4Λ
64π + m5

60π

)
−

∞∑
k=1

e−2πkmR(2πkmR(2πkmR + 3) + 3) cos(2πkq)
64π6k5R4

• Power UV-sensitivity through m =⇒ canceled by SUSY
• No UV-sensitivity through q

=⇒ Finite Higgs potential
V1l(ϕ) ∼ R−4 ≡ m4

KK
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Old Times ∼ 2000

• UV-insensitive Higgs mass!
• UV-insensitive Higgs potential!

Criticism : sum [−L, L ] → UV-sensitive terms Ghilencea, Nilles/Kim

... Heated debate! ...

Calculations done in a different setup, proper time, thick brane,
Pauli-Villars, dimensional regularization all seem(ed) to confirm
UV-insensitive result

Debate closed in favour of UV-insensitiveness∗ ... but ...

∗ In the absence of FI terms Ghilencea, Groot-Nibbelink, Nilles
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5D calculation from the outset in a toy model

S(5) =
∫

dz d4x
(

1
2 ∂aΦ̂ ∂aΦ̂ + ∂aχ̂ ∂aχ̂† + m2

Φ
2 Φ̂2 + m2

χ χ̂χ̂† + λ̂

4! Φ̂4 + ĝ
2 Φ̂2χ̂χ̂†

)
Φ̂(x , z + 2πR) = Φ̂(x , z) ; χ̂(x , z + 2πR) = e2πiq χ̂(x , z)

q ≡ q′ − [q′] → q ∈ [0, 1]
Fourier expansion of χ̂(x , z): EFT up to Λ (similar for Φ̂)

χ̂(x , z) = e iq z
R

(∑
n

∫
d4p

(2π)5R

)′

χ̂n,p e i(p·x+n z
R )

(
1

2πR
∑

n

∫
d4p

(2π)4

)′

≡ 1
2πR

[RΛ]∑
n=−[RΛ]

∫ Cn
Λ d4p

(2π)4 , Cn
Λ ≡

√
Λ2 − n2

R2

χ̂(x , z) = e iq z
R

[RΛ]∑
n=−[RΛ]

χΛ
n (x) e in z

R
√

2πR
; χΛ

n (x) ≡ 1√
2πR

∫ Cn
Λ d4p

(2π)4 χ̂n,p e ip·x
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4D Effective Potential from 5D Effective Potential

V(5)
1l (Φ̂) = 1

2 Tr5 log
p2 + n2

R2 + m2
ϕ + λ̂

2 Φ̂2

p2 + n2

R2

+ 1
2 Tr5 log

p2 +
( n

R + q
)2 + m2

χ + ĝ
2 Φ̂2

p2 + n2

R2

• p & n intertwined: NO hierarchy when including asymptotics

Tr5 =

(
1

2πR
∑

n

∫
d4p

(2π)4

)′

= 1
2πR

[RΛ]∑
n=−[RΛ]

∫ Cn
Λ d4p

(2π)4

Performing z integration → effective V (4)
1l (ϕ) with ϕ = ϕ0

V (4)
1l (ϕ) =

1
2

[RΛ]∑
n=−[RΛ]

∫ Cn
Λ d4p

(2π)4

(
log

p2 + n2
R2 + m2

ϕ + λ
2 ϕ2

p2 + n2
R2

+ log
p2 +

(
n+q

R

)2
+ m2

χ + g
2 ϕ2

p2 + n2
R2

)

λ ≡ λ̂
2πR ; g ≡ ĝ

2πR ; Φ̂ = ϕ√
2πR

V (4)
1l (ϕ) = 2πR V(5)

1l (Φ̂)

only if we respect the asymptotics
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UV-sensitivity and non-trivial topology
Performing the calculation this way

V1l(ϕ) =
5m2 + 3 q2

R2

180π2 RΛ3 −
35m4 + 14m2 q2

R2 + 3 q4

R4

840π2 RΛ + m5R
60π

−
∞∑

k=1

e−2πkmR(2πkmR(2πkmR + 3) + 3) cos(2πkq/R)
64π6k5R4

New q-dependent UV-sensitive terms:

• NOT canceled by SUSY! ∝ (q2
b − q2

f ) m2(ϕ)Λ
• Topological origin

1. = 0 for q = 0 (q ∃ in multiply connected spacetime)
2. q ∈ [0, 1]: q-dependent UV terms → 0 in decompactification limit

(“R → ∞”)
3. UV-insensitive terms: ̸= 0 for q = 0 (→ 0 for R → ∞)
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Alternatively : Infinite sum & Smooth cut

Typical argument: cut on sum → spurious “divergences” ... But ...

V1l(ϕ) = 1
2

∞∑
n=−∞

∫ d4p
(2π)4 log

(
p2 + m2 + (n+q)2

R2

p2 + n2

R2

)
e−

p2+ n2
R2

Λ2

⇒ Same result is found

UV-sensitive terms are NOT due to the sharp cut of the sum!
They come from a careful treatment of p̂ asymptotics

So ... why do “Proper time”, “Thick brane” and “Pauli-Villars”

give UV-insensitive results ?
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Secret liaison between proper time , thick brane & PV
Thick brane:

∑∞
n=−∞

∫ (Λ) d4p
(2π)4

e− (n+q)2

R2Λ2

p2+m2+( n
R +q)2 Delgado, von Gersdorff, John, Quiros

Pauli-Villars:
∑∞

n=−∞
∫ d4p

(2π)4
Λ4

Λ4+(p2+( n+q
R )2)2

1
p2+m2+( n+q

R )2 Contino, Pilo

Proper Time: Antoniadis, Quiros

V (4)
1l (ϕ) = −

∞∑
n=−∞

∫
d4p

(2π)4

∫ ∞

1
Λ2

ds
s e−s

(
p2+m2+( n+q

R )2
)

= −
∞∑

n=−∞

∫
d4p

(2π)4 Γ

(
0,

p2 + m2 +
( n+q

R

)2

Λ2

)

Smooth cut function of n+q
R : artificial re-absorption of q

Equivalent to introduce a hierarchy between (p1 , p2 , p3 , p4) and p5

⇒ Again : artificial wash-out of UV-sensitive terms
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First take-home message

V1l(ϕ) is UV-sensitive even with SUSY

Due to the non-trivial topology of the spacetime

Both with hard and smooth cutoff

Now ... we’re ready for the Cosmological Constant ...
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The Dark Dimension
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Swampland conjectures and experimental bounds

Swampland ingredients: Montero, Vafa, Valenzuela

• (A)dS distance conjecture: when Λcc → 0 Lüst, Palti, Vafa

µtow ∼
∣∣∣ Λcc

M4
P

∣∣∣α MP Λcc physical vacuum energy

• Emergent string conjecture: µtow = mKK or µtow = Ms Lee, Lerche, Weigand

• 1l string calculations: ρ4 ∼ M4
s (→ ρ4 ∼ µ4

tow)
• Higuchi bound α ≤ 1/2 Higuchi

⇒ 1
4 ≤ α ≤ 1

2 ⇐ Assumed as starting point for DD proposal

Experimental bounds on violations of 1
r2 Newton’s law : µtow ≳ 6.6 meV

Energy scale associated to Λcc: Λ1/4
cc ∼ 2.31 meV

⇒ α = 1
4 , “experimental value”: µexp

tow ∼ meV (∼ neutrino scale)
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The Dark Dimension

In principle µtow = Ms possible, but ... “ruled out by experiments”:

“we can describe physics above the neutrino scale with EFT”, no sign of
string excitations at these scales

Only possibility left: EFT decompactification scenario
mKK ∼ µexp

tow ∼ meV

This conclusion takes us to EFT: DD takes place in the (deep) EFT realm

Assuming the DD, i.e. Λcc ∼ m4
KK

true prediction of string theory
• EFT reproduces it:
• EFT does not: Attention needs to be paid!

1. Can we put the pieces together? How? How to frame it?
2. Is there really a string theory realizing the DD in our Universe?
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Set-up: (4 + 1)D theory with gravity

Compactification with gravity ĝMN =
(

e2αϕgµν − e2βϕAµAν e2βϕAµ

e2βϕAν −e2βϕ

)
Background configuration g0

µν = ηµν ,Aµ = 0, ϕ = ϕ0 (hereafter ϕ)

M2
i,n(ϕ, φ) = m2e2αϕ + (n + qi)2

R2 e6αϕ

e6αϕR−2 ≡ R−2
ϕ ≡ m2

KK ϕ radion, φ matter field

Fourier expansion → cutoff Λ (spherical):

p̂2 ≤ Λ2 → p2 + n2

R2
ϕ

≤ Λ2 e2αϕ
(

= m1/3
KK

R1/3Λ ≡ Λ2
ϕ

)
Λϕ < Λ is

• Cutoff for the rescaled momenta
• Cutoff for 4D brane fields (ΛSM = Λϕ)
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One-loop vacuum energy
Contribution of a bulk field:

ρ1l
4 =

5 log Λ2e2αϕ

µ2 − 2
300π2 e2αϕRΛ5 +

5m2 + 3 q2

R2 e4αϕ

180π2 e2αϕRΛ3

−
35m4 + 14m2 q2

R2 e4αϕ + 3 q4

R4 e8αϕ

840π2 e2αϕRΛ + m5

60π
e2αϕR

+
3 log Λ2e2αϕ

µ2 + 2
2880π2R4 e10αϕRΛ + R4 + O(Λ−1) = 2πR e2αϕρ1l

5

R4 = −
x2Li3

(
re−x)+ 3xLi4

(
re−x)+ 3Li5

(
re−x)+ 6ζ(5)

128π6R4 e12αϕ + h.c.

r ≡ e2πiq , x ≡ 2πe−2αϕR
√

m2 =⇒ R4 ∝ e12αϕ

R4 = m4
KK

As for V1l , q-terms are absent in the literature



Effective field theories KK theories 5D vs 4D Conclusion no. 1 Dark Dimension Conclusions

One-loop vacuum energy

Most “divergent” terms:
• SUSY: ρ1l

4
∼ (q2

b − q2
f ) e6αϕR−1Λ3 = (q2

b − q2
f )m2

KK
RΛ3

• NON-SUSY: ρ1l
4

∼ e2αϕRΛ5 = m2/3
KK

(
R 1

3 Λ
)5

ρ1l
4 ∼ m4

KK has divergences that do not disappear even in as SUSY
theory

Even in the swampland scenario, that requires the light tower limit
ϕ → −∞, no term can overthrow these contributions

No light tower regime where ρ1l
4 ∼ m4

KK
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What is the lesson?

In a (4 + 1)D EFT quantum fluctuations “heavily” dress ρ4

No automatic result ρ4 = Λcc ∼ m4
KK

(as often claimed)

To reach ρ4 = Λcc ∼ m4
KK

fine-tuning is needed

⇒ even if we believe the “swampland” conjectured

ρ4 = Λcc ∼ m4
KK

there is an issue of matching between this finite result for ρ4

and the EFT result
unless we resort to this fine tuning
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Summary & Conclusions

• Usual calculations mistreat the asymptotics of the loop momenta

• Careful treatment of loop momenta unveils the presence of
UV-sensitive terms of topological origin, previously missed

Our first conclusions
• No solution to the naturalness/hierarchy problem

• No solution to the CC problem

• Fine tuning and renormalization are required

• Is it possible to put pieces together?

To put things together ...
• Can this fine-tuning result from piling up of quantum fluctuations?
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Backup slides
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Computation of the one-loop potential (i = b, f )

V i
1l (ϕ) =

1
2

L∑
n=−L

∫ Λ
d4p

(2π)4 log
p2 + M2 + ( n

R + qi )2

p2 + n2
R2

=
L∑

n=−L

1
64π2

[
Λ4 log

Λ2 + M2 +
(

n
R + qi

)2

Λ2 + n2
R2

+ Λ2
(

M2 +
(

n
R

+ qi

)2
−

n2

R2

)
+
(

M2 +
(

n
R

+ qi

)2)2

log
M2 +

(
n
R + qi

)2

Λ2 + M2 +
(

n
R + qi

)2 −
n4

R4 log
n2
R2

Λ2 + n2
R2

]
≡

L∑
n=−L

F (n). (1)

Euler-McLaurin (EML) formula

V i
1l (ϕ) =

∫ L

−L

dx F (x) +
F (L) + F (−L)

2
+

r∑
k=1

B2k
(2k)!

(
F (2k−1)(L) − F (2k−1)(−L)

)
+ R2r , (2)

with r is an integer, Bn the Bernoulli numbers, and the rest R2r is

R2r =
∞∑

k=r+1

B2k

(2k)!

(
F (2k−1)(L) − F (2k−1)(−L)

)
=

(−1)2r+1

(2r)!

∫ L

−L

dx F (2r)(x)B2r (x − [x ]), (3)

Bn(x) Bernoulli polynomials, [x ] integer part of x .
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• If in (1), (2) and (3) we send L → ∞ while keeping Λ fixed, we get for
V i

1l(ϕ) the usual UV-insensitive (finite) result.

• To properly take into account the asymptotics of the loop momenta
p(5) = (p1, p2, p3, p4, n/R), we include them in (1) keeping

L
RΛ finite when L, Λ → ∞ . (4)

• From the physical meaning of the UV cuts: only values of M and qi that
fulfill the conditions

M2, q2
i ≪ Λ2, L2/R2 . (5)

• The conditions (4) and (5) are easily implemented in our calculations if
we write (ξ dimensionless finite number).

L = ξRΛ , (6)

and expand each term in (2) for M2/Λ2, q2
i /Λ2 ≪ 1. We get
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V1l (ϕ) =
2M2 tan−1 ξ + ξ

(
ξ2 log ξ2

ξ2+1
+ 1
)(

M2 + 3q2
i

)
48π2 RΛ3

+
ξ2
(

M2 + 3q2
i

)
+ ξ2

(
ξ2 + 1

)(
M2 + 3q2

i

)
log ξ2

ξ2+1
+ M2 + q2

i

32π2 (ξ2 + 1)
Λ2

+
ξ M2

(
6q2

i R2 + 1
)(

ξ2 + 1
)

+ ξ q2
i

(
q2

i R2 + 1
)(

3ξ2 + 5
)

96π2 (ξ2 + 1)2
Λ
R

+
ξ log ξ2

ξ2+1

(
3R2
(

M2 + q2
i

)2
+ M2 + 3q2

i

)
− 3M4R2 tan−1 ξ

96π2
Λ
R

+
3
(

ξ2 + 1
)2

M4 + 6
(

ξ4 + 4ξ2 + 3
)

M2q2
i +
(

3ξ4 + 6ξ2 + 11
)

q4
i

192π2 (ξ2 + 1)3

+
16πM5R + 15 log ξ2

ξ2+1

(
M2 + q2

i

)2

960π2 + R2 + O
(

Λ−1
)

. (7)

To compare (7) with the usual calculations, we take limit ξ → ∞, with Λ kept finite

V i
1l (ϕ) ∼

RΛ3M2

48π
−

RΛM4

64π
+

RM5

60π
+ R̃2 + O

(
ξ

−1
)

. (8)

with

R̃2 ≡ lim
ξ→∞

R2 =
3ζ(5)

64π6R4 −
1

128π6R4

[
x2Li3

(
ri e−x

)
+ 3xLi4

(
ri e−x

)
+ 3Li5

(
ri e−x

)
+ h.c.

]
.
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Vacuum energy calculation
Relation between the cutoff Λ of the (4 + 1)D theory and the 4D cutoff ΛSM of the Standard Model.
(4 + 1)D theory, with compact space dimension in the shape of a circle of radius R, defined by

S = Sgrav + Smat (9)

Sgrav =
1

2κ̂2

∫
d4xdz

√
ĝ
(

R̂ − 2Λ̂cc
)

(10)

is the (4 + 1)D Einstein-Hilbert action and as an example for the matter action we take

Smat =

∫
d4xdz

√
ĝ
(

ĝMN
∂M Φ̂∗

∂N Φ̂ − m2|Φ̂|2
)

, (11)

with Φ̂ a (4 + 1)D scalar field that obeys the boundary condition Φ̂(x , z + 2πR) = Φ̂(x , z). We
indicate with x the 4D coordinates and with z the coordinate along the compact dimension. Using
the signature (+, −, −, −, −), the (4 + 1)D metric is parametrized as

ĝMN =
(

e2αϕgµν − e2βϕAµAν e2βϕAµ

e2βϕAν −e2βϕ

)
(12)

Aµ is the graviphoton and ϕ the radion field. Considering only zero modes for ĝMN , i.e. gµν (x),
Aµ(x) and ϕ(x) only depend on x . Integrating over z, for the 4D gravitational action S(4)

grav we get

S(4)
grav =

1
2κ2

∫
d4x
√

−g
[

R − 2e2αϕΛ̂cc + 2α2ϕ +
(∂ϕ)2

2
−

e−6αϕ

4
F 2
]

, (13)

where the 4D constant κ = M2
P is related to the (4 + 1)D κ̂ = M̂3

P through the relation
κ2 = κ̂2/(2πR).
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The fields ϕ and Aµ in the above equation are dimensionless (dimensionful fields are obtained
through the redefinition ϕ → ϕ/(

√
2κ), Aµ → Aµ/(

√
2κ)), and we used 2α + β = 0. The

canonical kinetic term in (13) for the radion field is obtained taking α = 1/
√

12.
Considering the Fourier decomposition of Φ̂(x , z), for the 4D matter action (11) we have

S(4)
mat =

∫
d4x
√

−g
∑

n

[
|Dφn|2 −

(
e

√
2
3

ϕ
MP m2 + e

√
6 ϕ

MP
n2

R2

)
|φn|2

]
, (14)

where Dµ ≡ ∂µ − i (n/R) Aµ, and φn(x) are the KK modes of Φ̂(x , z). Taking a constant
background radion field ϕ, and the trivial background for Aµ, the metric (12) becomes

ĝ0
MN

=

(
e

√
2
3

ϕ
MP ηµν 0

0 −e
−2
√

2
3

ϕ
MP

)
. (15)

From (14) we define the ϕ-dependent radius Rϕ ≡ R e
−
√

3
2

ϕ
MP . With such a definition, we

immediately see that, when computing radiative corrections, the (4 + 1)D momentum
p̂ ≡ (p, n/R) is cut as

p̂2 = e
−
√

2
3

ϕ
MP

(
p2 +

n2

R2
ϕ

)
≤ Λ2

. (16)
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This latter equation is conveniently rewritten as

p2 +
n2

R2
ϕ

≤ Λ2
ϕ, (17)

where we defined Λϕ ≡ Λ e
1√
6

ϕ
MP . In terms of the dimensionless ϕ of (12) and (13), and before

using α = 1/
√

12, it is Λϕ = eαϕΛ = m1/3
KK

R1/3Λ.
Since p2 in (17) is the modulus of the four-momentum on the brane, this equation tells us that Λϕ

is the cutoff ΛSM of the SM (or more generally of the BSM model that lives on the 3-brane, where
fields have n = 0). Therefore:

ΛSM = Λϕ = Λ e
1√
6

ϕ
MP . (18)

Finally, as the DD scenario is realized for negative values of ϕ, from (18) we see that ΛSM ≤ Λ, i.e.
the SM cutoff is lower than the cutoff of the (4 + 1)-dimensional EFT that implements the DD
scenario.
Let us note that here we considered a spherical cutoff. Naturally, we can make a different choice,
taking for instance a cylindrical cutoff

p2 ≤ Λ2
ϕ and

n2

R2
ϕ

≤ Λ2
ϕ.

This choice, that is closer to what is typically done when using the species scale Λsp as the, does
not change the above considerations.
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Criticisms

Anchordoqui, Antoniadis, Lüst, Lüst

• We reportedly question the swampland relation Λcc ∼ m4
KK

• We reportedly claim for α the values α = 1/2, α = 3/2 for the
SUSY and non-SUSY case respectively

• Cutoff dependence of the result, nonsensical to extract relationship
between vacuum energy and mKK without fixing the cutoff

• Quantum Gravity dictates UV-IR mixing of the cutoff
• With general Λ: non-SUSY case requires a too low cutoff not to

violate Higuchi bound
• Λ = Λsp: non-SUSY violates Higuchi
• Λ = mKK : DD relation is obtained, correct cutoff
• T ̸= 0 and Casimir energy: field theory examples with finite result

T ̸= 0: T 4; EC : m4
KK
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Replacement
Criticisms are based on the replacement ρ1l

4
→ Λcc in our results for ρ1l

4

ρ1l
4

∼ m2
KK

RΛ3 and ρ1l
4

∼ m2/3
KK

R5/3Λ5

↓ ↓

Λcc ∼ m2
KK

RΛ3 and Λcc ∼ m2/3
KK

R5/3Λ5

Authors take the result of the one-loop calculation to directly
coincide with the physical vacuum energy

• Opposite to what we do
• Not in itself a problem: theoretically legitimate in principle

We must explore the consequences of the ρ1l
4

→ Λcc replacement to
determine its viability
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Fatal flaw

Λcc ∼ m2
KK

RΛ3 and Λcc ∼ m2/3
KK

R5/3Λ5

Most important consequence

The replacement ρ1l
4

→ Λcc fully determines the cutoff Λ

Λcc ∼ m4
KK

by definition → replacement fixes

RΛ3 ∼ m2
KK

This implies:
ΛSM = Λϕ ∼ mKK ∼ meV

Absurd requirement! ρ1l
4 → Λcc is unacceptable
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Inconsistency of the criticisms
This means that

• Λcc ∼ m2
KK

RΛ3 and Λcc ∼ m2/3
KK

R5/3Λ5 do not exist
• Cannot be used to derive any relation and draw any conclusion

On top of that:

Λϕ ∼ mKK leaves no space for the (4 + 1)D theory of the DD
scenario
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�����������

ρ1l
4 → Λcc

We could stop here ... but ...

Let’s follow ALL arguments anyway ... Further inconsistencies ...
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α = 1/2 & α = 3/2

From mKK ∼
∣∣∣ Λcc

M4
P

∣∣∣α MP , rewritten as mKK ∼ M1−4α
P Λα

cc

• Values of α can only be deduced from the physical vacuum energy
• To conclude α = 1/2 and α = 3/2 coefficient must be given by

correct MP power

Rewriting the relations for convenience

mKK ∼ (RΛ3)−1/2Λ1/2
cc ; mKK ∼ (RΛ3)−5/2Λ3/2

cc

• α = 1/2 and α = 3/2 require RΛ3 ∼ M2
P , in sharp contrast to

RΛ3 ∼ m2
KK

Even closing an eye on fatal flaw, our results do not amount to
α = 1/2 and α = 3/2
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Higuchi bound
For a spin 2 massive field in 4D dS:

m2 ≥ 2
3

Λcc

M2
P

• Relation between physical parameters

Comparing: Λcc ∼ m2
KK

RΛ3 Λcc ∼ m2/3
KK

R5/3Λ5

↓ ↓

RΛ3 ≲ M2
P RΛ3 ≲ 10−48M2

P

• First one: not too strong constraint (Λ ≤ M̂P , no constraint at all)
• Second one: too low cutoff

Bound 2 can be rewritten as Λϕ ≲ 105mKK ∼ 102 eV

Too low ... but later on ... contradiction
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Higuchi bound and “natural” choices for R and Λ

• Authors note our results still depend on R and Λ
• Claim: “natural” choices for R and Λ, eventually consistent with DD

“Natural” choice for R: R = m−1
KK

• Authors miss radion dependence. Rϕ = Re−3αϕ = m−1
KK

correct
relation

“Natural” choices for Λ: UV-IR mixing

- (1): Λ = Λsp ∼ m1/3
KK

M2/3
P , Higuchi explicitly violated

• Λsp cut on p: Λϕ = Λsp(Λ = M̂P) correct identification

- (2): Λ = mKK , everything ok, “correct choice”
• Λϕ = mKK and not Λ = mKK is what needed to have m4

KK

• Absurd again: ΛSM ≲ meV and no space for (4 + 1)D theory
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Finite temperature
Profound difference between the sums in finite T and KK

ρ1l , F 1l ∼ 1
2
∑

n

∫
ddp log(p2 + m2 + fn) .

KK theories (ρ1l)
• n and p intertwined, components of p̂
• p and n cut together: no hierarchy when including asymptotics

Finite temperature (F 1l) Finite for SUSY theory

• n and p not intertwined
• ∫ d3p: trace over quantum fluctuations
• ∑n: statistical average (mixed states)
• Infinite sum: ergodicity! MUST DO: no q dependent “divergences”

F 1l
T = T

2

∞∑
n=−∞

∫
d3p log(p2 + m2 + fn) − 1

2

∫
d4p log(p2 + m2) ∼ T 4 = finite .
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Casimir energy

By definition

EC = ρR − ρ∞

E1l
C = 1

2

∞∑
n=−∞

∫
d4p log(p2 + m2 + fn) − 1

2

∫
d4p log(p2 + m2).

- Infinite sum in ρR (literature): ∼ finite T
• ρR and ρ∞ have the same divergences
• EC ∼ m4

KK

-No hierarchy when including asymptotics in ρR (us): q-divergences
• ρR and ρ∞ do not have same divergences when non-trivial boundary

charges are present
• ρR − ρ∞ subtraction not sufficient
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