SPHERICALLY SYMMETRIC GEOMETRODYNAMICS IN
THE JORDAN AND EINSTEIN FRAMES
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Jordan-FEinstein Frames

* (Faraoni and Nadeau, Phys. Rev D 75, 023501 (2007)) Suppose the

roton mass is MMy 1n mass units M, and, in “natural units”, we scale
p p u b 5
the unit of measurement by a factor AL (length)-! My = )\_1mu

(notice that X could be a local function )\(x) ). In the new unit the

~ _ y—1
proton mass mp — )\ mp

* Confronting the measurement of the proton mass in the two mass units

—1
mp_)\ my My

My A"Imy, My



Jordan-FEinstein Frames

: oL
+ Since d§ = Adsand ds = (g;;dx"dz?) ?(Dicke, Phys. Rev. (1962) 125,
6 2163-2167) then the covariant metric functions scales as

Juv = >‘2guv

* Invariance under rescaling of units of measurement implies Weyl (conformal)
invariance of the metric tensor

* The starting frame 1s called “Jordan” frame and the conformal transformed the
“Hinstein Frame. One observable can be computed in both frames. Its measure,
obviously different in the two frames, 1s related by conformal rescaling according to the
observable’s dimensions.(e.g. mp — A_lmp ).

* Dicke highlights that free falling particles, in the Jordan frame, mapped into the
Einstein grzﬁlne, do not move on geodesic curves. The equivalence principle does not
seem to hold.



Scalar-Tensor Theory

* In general, one starts from a scalar-tensor theory, with GHY-like boundary term, in the Jordan Frame

s= [ ovg (fOR- MO O00.0-U@) +2 [ & WVRIOK

M
* and passes to the Einstein Frame with the transformation

G = (167GF(8) ™ g

® therefore, the action becomes

1 = 1 = .
S= [ 0oV (fgrght- A07 000,06 -V(9)) + grp [ @WK

87TG OM

A(9)

__ L (MP)  n=-1(f(9) _ Ul
- 167G (2f(¢) T2 () )’V(¢)  [167Gf(¢)]7

e [tis assumed that if (gNV (;U)’ gb([[j)) 1s solution of the E.O.M also (gl“/ (aj, ¢), ¢(QU)) is

solution (True?). This reasoning seems to address that the transformation from the Jordan to the Einstein
trame look like a canonical transformation in the Hamiltonian theory.



Brans-Dicke Theory

* Brans-Dicke, with GHY boundary term, is a particular case of Scalar Tensor theory ( f(¢) = ¢)

9" 8,00, ¢ — U(qb)) +2 / BrvVhoK
5]

M

Deruelle, Sendouda, Youssef PRD 80, (2009).
They still claim that the transformations are

S = /d‘*a;\/_( 4R—$

* How to perform canonical analysis of this theory?

1 Hamiltonian canonical 3
Garay and Gracia- G=Pgy, &=—-—log ® h,=dh, N*=NI, N= \/EN: b= \/;ln(b
Bellido NPB 400 2B
(1993): the N?=®N? N,=oN, sab = Lopa o Py —
transformations ’ ' k p gp ’ C 3(¢7T p )
are Hamiltonian {ﬁab’ ﬁcd}l — {hab» cd}J, { gZ, 77'}1 _
canonical.

{¢’ 7T}J’ {~ab ﬁ-}J - 0 {hab’ ¢}J _ O {I:iab’ ﬁ-}J =0
{ﬁab’ QZ}J =0



Brans-Dicke Theory

* The Hamiltonian Weyl (conformal) transformations from the Jordan to the Einstein frames are

N

N = N(167G¢)2 ; N; = N; (167G ) ; hi; = (167G) hyj ; 7 = .

(167G¢)z

i ij
2i_ s D 1

(167G9)’" "~ 167G 0= 9Ty = 5(9157% — Th)

* They are not Hamiltonian canonical

TGN

{N,7s} = T6:C3

#0,and {N;, 74} = 167GN; # 0

* The Dirac’s constraint analysis of the Hamiltonian theory has to be done, independently, in the Jordan
and Finstein frames. We have studied the Hamiltonian constrained theory in Jordan and Einstein frames

3 3 3
for both cases w # -3 and , w = —- In the case w = - the theory has an extra Weyl(conformal)
symmetry with an associated primary first class constraint Cg



Hamiltonian Analysis of BD for w # —%

in Jordan Frame

in Einstein Frame

constraints

T 0 ~0;H~0;H; ~O0;

constraints

T 0m~0;H~0;H; =0;

constraint algebra
{m,mi} = 0;{m, H} = 0;{m, Hi} = 0;{mi, H} = 0;
{mi, H;} = 0; {H(z), Hi(a")} = —H(a")j6(x, 2');
{Hi(z), H;(2)} = Hi(2")9;0(w, 2") — H,;(2)9;'6(x, 2');
{H(z), H(z")} = H'(2)0id (x, 2") — H'(2")0;0 (x, 2');

constraint algebra
{7, 7} = 0; {7, H} = 0; {7, H} = 0; {7i, H} = 0;
(i 1y} = 05 {H(@), Hilw') | = —H(2)}o(w,2");
{Hi(x), Hj (@)} = Hi(2')0;6(w, ') — Hi()0;6(x, 2');
{H(z), H(z')} = Hi(2)0:0(z, ') — H ()0l (x, 2');




Hamiltonian Analysis of BD for w = —3%

in Jordan Frame

3
2

in Einstein Frame

constraints
N ~ 07t & 0;Cy = 0;H T3/ O;H§_3/2) ~ 0;

constraints
i R 0;Cp = —¢7ig = O HTY? & O;H§_3/2) ~ 0;

~

N =~ 0;

constraint algebra
{nn,m} ={nn, H 3D} = {WN,H,E_3/2)} =0;
{mi, H 3D} = (i, H YD} = 05
{Col@), WP ()} = ~0i5(w,2")Co(a');
{Col@), H D (@)} = SHED (@)o(2,2);
{HEP(@), 1) | = ~HEY2) @)oib(e,2);
{HETP @), 1 (@)} = 1 (2)8;6(,2)
~H TP ()01 8(x, ');
{HD (), H 3P (a")} =
HTD ()06 (w, o) — H YD ()06 (w,2)+
[D*(log ¢(z))] Cy(2)0:6(z, 2')
— [D'(log ¢(2"))] Cs(2")0id(x, ');

constraint algebra
{(7n, T} = {7n, H3/PD} =0, {%N,ﬁ§‘3/2)} = 0;
{7, ﬁ(—3/2)} = {7, ﬁ§—3/2)} —0;
Co(), H; /P (@)} =05
@(@ﬁ(f‘/ﬁ(fﬁ =0,
{A2@), 7P @)} = ~HEY (@) 3ld(a,2);
{H{2 (2), 72 @)y = 7T ()96 (=, )
—H T (2)8 §(x, 7);
{ﬁ(_3/2)(az),ﬁ(_3/2)(ac’)} —
H 3D (2)6'8(z, 2') — H TP (2) 86 (2, 2');




FLLAT FLRW Brans-Dicke theory
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CANONICAL EQUIVALENCE OF JF AND EJ VIA GAUGE FIXING

* We perform a gauge-fixing in the Jordan Frame

N = co(x); N* = ¢*(x) we implement this gauge choice as secondary constraints N — co(z) ~ 0; N — c'(z) ~ 0

* Previous gauge ﬁxing implies a gauge ﬁXing in the Einstein frame

lolr—l
N[

= ¢o(2)(167G@)2; N = ¢'(z)(167Gd)z — N — co(z)(167GP)2 =~ 0; N* — ¢t (z)(167G¢)z ~ 0

* The primary first class constraints become second class both in the Jordan and Einstein frames

N[

T EICEED

{N(z) — co, 75 (z")} ~ 6B (z — 2') {N(z) — co (167GP)% , 7n(
(2} ~ 579;5(3)(:1: — ')

{Ni(2) = ci,n?(a")} = 6] §® (& — o) {Ni(z) — ¢; (167G () , T (=



CANONICAL EQUIVALENCE OF JF AND EJ VIA GAUGE FIXING

* Pollowing Dirac, we define Dirac’s brackets and substitute them to the Poisson
brackets

{,}oB ={, }—{,goa}C;ﬂl{@g, } Cop = {pa, ps} being ¢q, ps second class contraints

* Dirac’s algorithm implies that we calculate the equations of motion using Dirac’s
brackets.

* We resolve strongly the second class constraints both in the JF and EF

* On this reduced phase space, the transformations from JF to EF are Hamiltonian
canonical transformations.



CANONICAL EQUIVALENCE AND PHYSICAL
EQUIVALENCE

Harmonic Oscillator (Goldstein )

Canonical transformations (not symmetry of the system...)

[ 2P
q= msin@ ,» = V2mwPcosQ

Therefore the Hamiltonian becomes

H=wP

and then,

E . OH 2F |
P—;, Q—a—P—w, Q =wt+ a, q(t)—\/mw2sm(wt—{—a)

Notice that the harmonic oscillator is mapped into a free particle



GEOMETRODYNAMICS IN SPHERICAL SYMMETRY IN THE
JF AND EF

* Lorentian Manifold (M,g) where M =R x ¥; and ¥y = RxS? (=00 <1 < +). The ADM metric is

gudztdzr’ = —N?dt? + A2 (dr + N"dt)* + R?dQ?
= — (N? = A*(N")?) dt* + 2A*N"dtdr + A*dr? + R*dQ?

* The foliation M = R x Y, can be visualized as @ s )

(B' yab)

I, (Be.0an)

(Bto, )

* The boundary M = ¥, UXs, UB, where X; is space-like and B is time-like.



GEOMETRODYNAMICS IN SPHERICAL SYMMETRY IN THE
JF AND EF

* The corresponding E-H action with all the boundary terms

1
- | dlo/=g DR+ d3 hK — =& d3 nK
T x Fie 87 G 2vh 8rG A
3 = 2 i i
87rG d 2/—7 O = G d z+/o arcsinh(n*u,,)
+% N d*z oarcsinh(n“u#).

e The 3+1 decomposition on the trace R of the Ricci tensor is

WR=®R+ KK — K42V, (—n*K — a*)

* Implementing this 3+1 decomposition 1 B
_ _ , = / dt / d3 \/EN(("‘)R + K KV — K2))
in the previous action, we get 167TG 5,

87TG d3x\/ ( Nrn'K — N 3)r,h”V n )

1

52 J,, CeVoarcimhin) + ¢

1
r—e d%ﬁ arcsinh(n*u,,)



GEOMETRODYNAMICS IN SPHERICAL SYMMETRY IN THE
JF AND EF

* Previous action is finite for compact geometries. For non-compact geometries, we define a physical action
substracting a background geometry g, an asymptotically flat static solution of the equations of motion

SPHYS(g) = S(g) — S(g0)

* Then, we get always a GPHYS _ 1 " dt/ Bk ((3)R LK. K9 — Kz)
ij
bulk and boundary in 167G tO Xt
the action 87rG dt/B d*zN+/o ( @f — (2)k0) .
to t

* The corresponding total Hamiltonian density, Hapy = v h,-j — L p therefore the total hamiltonian is

_ [ B a7
Hapy = /zt &’z (NH + NiH') % =h [ 0 g _ 167G (wijwij _ ”_f%)]
fu#e (N 2| ) o |
+2 | d°zvo | Nj—=r; — N;—=r;
\/E \/E ’ 0 . \/* 7Tij
H' = -2VhV, | —
87TG d2$\/_( 0) ) ’ (\/E)



SPHERICAL SYMMETRY IN THE JORDAN FRAME

* The Lagrangian density L;pin the JF (from now on G=1)

Lop = — [(1 — ¢—2> @R — g””amam}

167 6

* The action in the JF with the boundary terms is

Sip = —/ dzy/—g [(1 ﬂ) DR — g 9,00, ¢]
—/ d3zf<1——)K——/ d%f( —";—2>K
——/ v/~ (1— ﬁ) e - —/ d2z\/_( ﬁ) arcsinh(n*u,,)

42
+e- /Bt1 d’z/o <1 - F) arcsinh(n*u,,).

* The bulk term of the physical action results to be

PHYS
SJF

= Ja o (- 5) [ (5 Crom) e n (i) ()
+N(_%+R§2A_1227\2 /ﬁ)} 1<_NR;¢2 AR2(¢ N¢))

s [B(~h+(aNY) 2 (<R + RNT)] (- 379

¢)2 d)(b// A/¢¢l 2¢R/¢/
(A2+A A3+RA2)}

4

+éNAR2



SPHERICAL SYMMETRY IN THE JORDAN FRAME

* Momenta in the Jordan frame

A = agf _ 1 <1— %2) R(R R’N?") ]g”jf( N"¢ +¢),
o= G () s (e« G (5-vd)
Ts = 855 - —6—]13 [R( A+ (ANTY ) +2A (—R+ R’N")] + ];—ZQ <¢ N"gb)
* Hamiltonian density function
H,r=N"H,+ NH
H, = tnR — mhA + 74 io= SR(-%) (+5) (- 5 (%)
o (1) (- 5) e
oo 8) (hom e ) e s e,



SPHERICAL SYMMETRY IN THE EINSTEIN FRAME

* The bulk physical action, in spherical symmetry, in the Einstein Frame

SPHYS = /dt/ dr[~< (- A+(AN”))(§+§’]VT)+2(§+}~2’]VT)2>
v(_BR', RRX R? A AR? »  NR2§?
+N ~—— - =+ |+ NT§) - ==
( A A2 2A 2) 4< N (6-N"d) A )
* The canonical momenta are _ . P (E - E’Kf’“)
£ = =~ - = =~ )
O\ N .
- _ OLpr _ A(R-R'N") + R(A - (AN"))
RE——F = = ;
oR N
. _oc AR? % o
Fp= —2r = —=(¢6— N"¢).
Ao 2N

* The Hamiltonian density is then

= = = — = + = - =+ == =
R 2R A A2 T 2A 2 AR 4A
+N" (7R — K + 749 )

_ _ ~ ~ A2 DD DRI 2 A T2 D2 172
i — N(_WRWA+A7TA RR RR'A R A p +R¢



CANONICAL TRANSFORMATIONS

* Transformations from the JF and EF

2 - 2\ 3 - _ 2\z 2\ 3
§uu=(1—%)gw N=<1—%) N, N'=N", A (1—%) A,R=(1_%) R

(1—¢ )_57TA, 7AT:R= (1—%2)_571'}2,

2
6
2 1 1
%qg: (1— %) 7T¢+6R(,ZS7TR+ gAQSﬂ'A.

;12
|

* Poisson Brackets among canonical variables

{N,%N} _ 1,{K,%A} _ 1,{&,@ } —1 {5,@} —1
{ma, 7} =0,{7R, Ty} =0

* The transformations from the Jordan to the Einstein frame are not Hamiltonian canonical

Gauge fixing implemented as secondary constraints, and intoduction

{N%}:-N )¢ . .
e 6 6’ | of Dirac’s barckets to make the transformation from JF to EF

~ #\ ¢ Hamitonian canonical
{Nr,ﬂ'¢} = —NT <]. - g) g . 1
N =¢(r) N = ¢-(1) {»}oB=1{} — {x}Cos{xs: "}



SOME USEFUL REMARKS

* There exist some articles, in the litterature, which do not treat the integration by parts coming from WR

and use boundary terms, in the action, different from those we introduced above

* In particular, in the Jordan Frame, the 3+1 decomposition of )R has a term

2V, (—n'K — d*)

that, in scalar tensor theories, generates quantities, by integration by parts, important for the equations
of motion. If we discard the above divergence term, we checked, we obtain momenta as

R(R— R'NT
1 2 ™= —(1-¢°) ( N )’
Lor= o [(1 _ E) @R gﬂvﬁuqbauﬁb] ) (1 g M= BN+ B = (AN)
R = — - N ?

* As usual, we can express the Hamiltonian canonical variables in the Eisntein frame as function of the
Hamiltonian canonical variables in the Jordan frame. If we employs the previous definition of the
momenta we get the wrong commutation relation.



JANIS SPHERICAL SYMMETRIC SOLUTION

* Consider the following Fisher, Janis, Newman and Winicour (FJNW) solution (in the Einstein frame)
(b and y are related to the mass 7 of the compact object)

b\” ., N, b\, 2 2
== (1-7) ae (1-7) Tt (1-0) b=2fm+ Gy =5
~ 1—*)/2 b

* In general, for y # 1, it has two singularities 7 = 0 and ¥ = b. r = b is a singularity without a horizon, in
tact checking the curvature invariants

S 1—7 b\ (b\° =1
UV — _ _ —

9w = 50—y (1 ) () 0
0 _ (1= b\*

v - _Z

R Ry 4(b—r)* 1 r

s
R*™P Ry =

T

*  FJNW is solution of the Equations 7 (1 ~ 9) fr— o
of motion in the Einstein frame Z
')




BBMB BLLACK HOLES IN THE JORDAN FRAME

1
* If one pass from the EF to the JF  ds® = T ¢2/6d§2 in the case y =—; , we get

1 b L
-3 (1) oo S -] -
¢=+6tanh |=In{1— - )| =—+6
4 r _b/r
A<r>=§<1+ 11 ) R(r>=g<1+,/1_§) L+ 10/
* If we pose

b0
T 2p

* The metric in the Jordan frame is the Bocharova-Bronnikov-Melnikov-Bekenstein (BBMB) Black Hole

metric

2 b\’ 2 b\~ 2 | 2702
ds*=—(1—— | dt"+ (1 — — dp* + p~dQ
4p 4p




BBMB BLACK HOLES IN THE JORDAN FRAME

* The.r = b naked singularity in the Einstein frame corresponds here to the Balck Hole horizon

p=p

* If we compute the curvature invariants, there exists one singularity for p = 0

gle;w — Oa
R#R,, = 0
1774 T 64p8 ?
e B2(7H2 — 48bp + 96?)

32p8

* The transformation from the Joradn to the Einstein frame is, as immediately seen, singular for ¢p =
— /6, which correspond to the naked singularity 7 = b in the Einstein frame and the horizon event
p = 0 in the Jordan frame.



CONCLUSIONS

We have introduced and discussed the Jordan and Einstein frames in the Hamiltonian formalisms

We have proved that the Weyl (conformal) Hamiltonian transformations from the Jordan to the Einstein
trames is Hamiltonian canonical, provided we perform a gauge fixing on the lapse and shifts functions,
implement them as secondary constraints, and substitute the relative Dirac’s Brackets to the Poisson Brackets.

We have introduced the ADM analysis in the case of Spherical Symmetry and the relative boundary terms in
the action functional. We have stressed the importance of the right boundary terms in deriving the Equations
of motions in the Hamiltonian formalism.

We have shown an example of Spherical Symmetric solutions. The Janis solutition, via a Weyl (conformal)
transformation with a singularity, can be mapped to BBMB Black Hole. The naked singularity in mapped into
the Black Hole horizon.

Jordan and Einstein frames, via gauge fixing in the Hamiltonian formalism, are mathematically equivalent via
a Hamiltonian canonical transformation. The Weyl(conformal) Hamiltonian transformation maps solutions
of the equations of motion in the Jordan Frame into solutions of the equations of motion in the Einstein
trame. The Physical equivalence is, in our opinion, still an open problem.



CANONICAL EQUIVALENCE AND PHYSICAL
EQUIVALENCE

« JF is canonical equivalent, via gauge-fixing of Lapse N and shifts N; ,

to EF (structure of light cone preserved by JF-EF transformations).

* JF 1s canonical equivalent to Anti-Gravity frame (light cone structure modified

by JF- Anti-Gravity transformations).

* JF cannot be equivalent to two physically inequivalent frames. Therefore, Hamiltonioan
canonical transformations represent, in our opinion, a mathematical equivalence. These
transformations map solutions of e.o.m into solutions of e.o.m.



CONCLUSIONS

* The transformations from the Jordan to the Einstein frames, in the extended
phase space, are not Hamiltonian canonical transformations.

* Gauge-tfixing the Lapse N and the Shifts N; and implementing the Dirac’s

Brackets, Hamiltonian canonical transformations do exist from JF to EE

* This very fact does not mean, necessarily, that the two frames are “physically”
equivalent.

* The equivalence of the physical observables in JFF and EF remains still to be
studied.



CANONICAL EQUIVALENCE OF JF AND EJ VIA GAUGE
FIXING

* We have performed the following gauge fixing in the Jordan Frame and in the Einstein Frame

Jordan Frame N ~ ¢, N; ~ ¢; — Einstein Frame N — c(167qu5)% ~0,N; —c;(1671G¢) ~ 0

* The secondary first class constraints T = 0 and 7m; ® 0 become second class constraints

* Itis possible to define Dirac’s brackets and solve the second class constraints

{, B =1, }—{,goa}C’;ﬂl{QOg, } Cap ={¥a,pp} being ¢q, s second class contraints

* The transformations from the Jordan to the Einstein frames result to be Hamiltonian canonical

transformations. Remember: now the phase space is a reduced one, where we have gauge-fixed the lapse
function N and the shift functions Nj .

* Does it mean that the two frames are physically equivalent?



ANTI-GRAVITY TRANSFORMATIONS

(Canonical Transtformations)

* There exist Hamiltonian Canonical Transformations on the extended phase space:
The Anti-Gravity transformations

N . = _ . _ LoIkE o, Pk .
N*=N ;7N =7N ;N =N; ;7" =7"; hj; = (1671Gp)h;; ; Q‘
%*Z] i J ” Post-Newtonian

T _ 4.~k 1 .
= Qengg)d ¥ =0T = 5 (@me —mh); L

Carrolian Minkowskian
Gravity,
* In two dimensions, they look like G- ,c =0
2 . 2 2 2. Anti-Newtonian
ds® = —dt” + Adz 7)‘ > 1 M. Niedermaier 2019

* Since this theory is canonically equivalent to B-D theory, the constraint algebra of
secondary first class constraints (H, 7 ) is like B-D theory’s one.



