Searching for Ultra-Light Dark Matter Signals with the Stellar Kinematics

Guan-Wen Yuan University of Trento.

With Z.-Q. Shen, Y-L Sming Tsai, Q. Yuan and Y.-Z. Fan

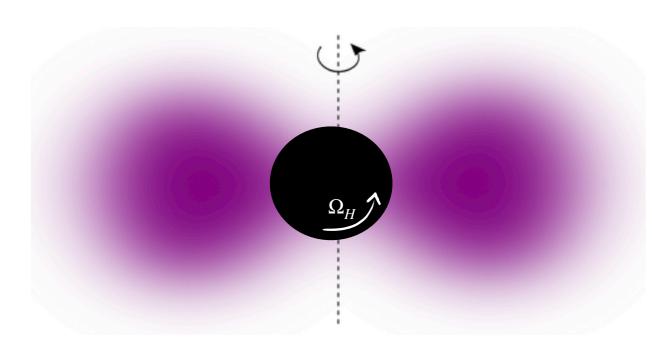
Based on PRD 106, 103024(2022); MNRAS 527, 3196-3207(2024).

4th International FLAG Workshop@Catania (11/09/2024)

Outlines

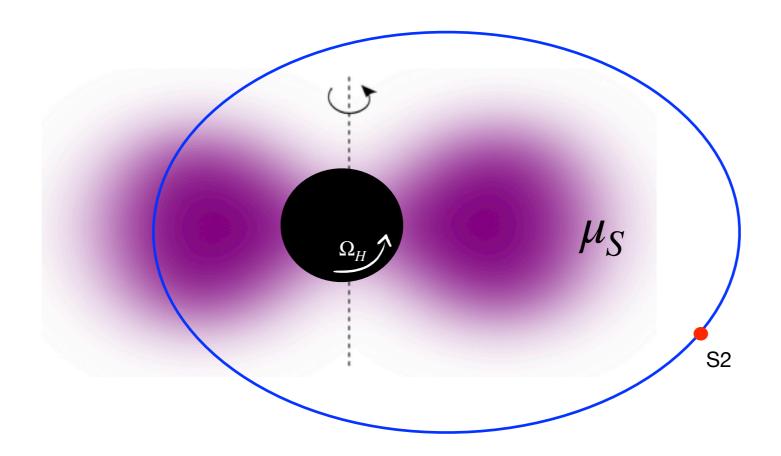
Superradiant scalar clouds growth around Sagittarius A*

- What are superradiant clouds?
- Why are we interested in them?
- How can we constrain their mass at the GC?
- Results on the mass of those clouds around Sagittarius A*;



Scalar cloud

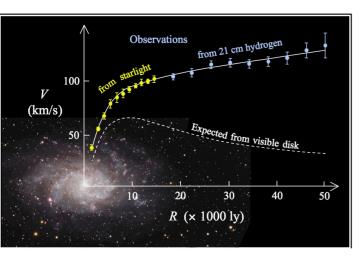
Black holes as particle detectors

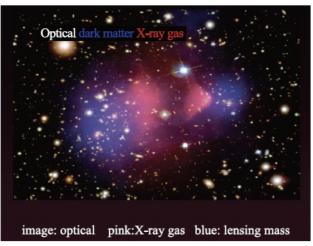


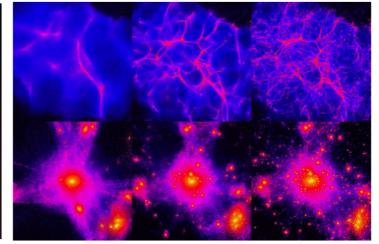
Bosonic waves scattering off a rotating black hole can extract rotational energy from it. For a scalar cloud, the interaction with the black hole's gravitational field leads to the amplification of the field's amplitude with:

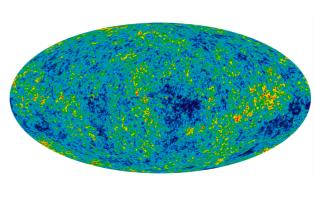
Superradiance condition: $\omega < m\Omega_H$

Motivation







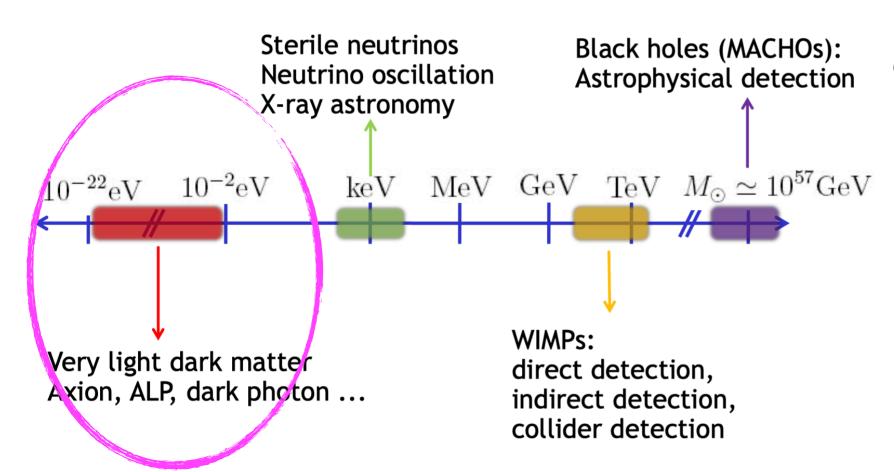


Galactic Rotation Curve

Collisions of Galaxy Clusters

Large Scale Structure

Cosmic Microwave Background



Crisis on small scales of LCDM:

Cusp-core problem
Too-big-to-fail problem
Missing satellites problem
Diversity problem

Motivation

Ultralight bosons are good candidates for DM (axions, axion-like particles, dark photons...)

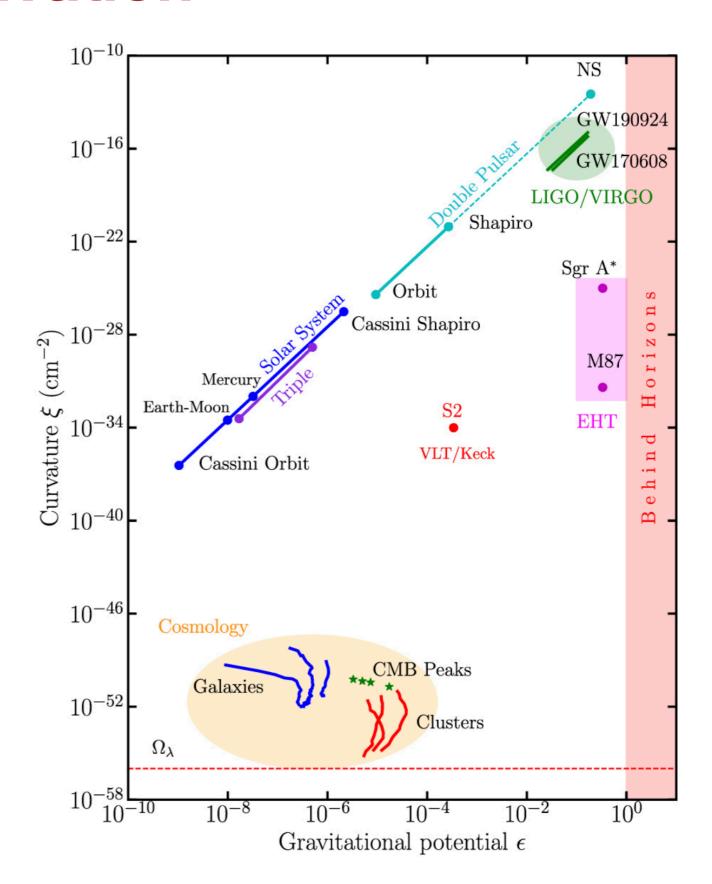
BUT

They are very weakly coupled to SM particles and difficult to detect in the lab

DM would be bounded in strong gravitational field and form a far more dense region around SMBH.

Galactic Center:

a perfect laboratory to test DM around **Sagittarius A*** for their density

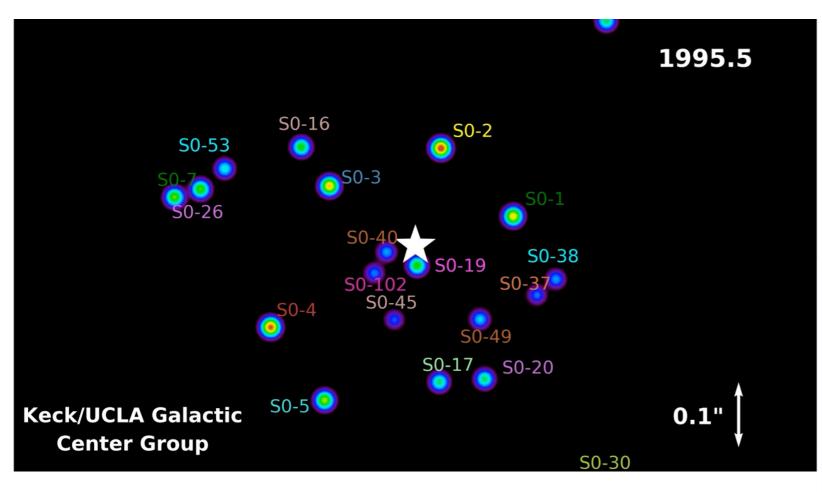


Mariafelicia de Laurentis, et al, The GC as a laboratory for Theories of gravity and dark matter, *Rept.Prog.Phys.* (2023).

Data sources

Imaging and astrometric measurements @ Keck Spectroscopy and radial velocity measurements @Keck @VLT

S-stars cluster around SgrA*

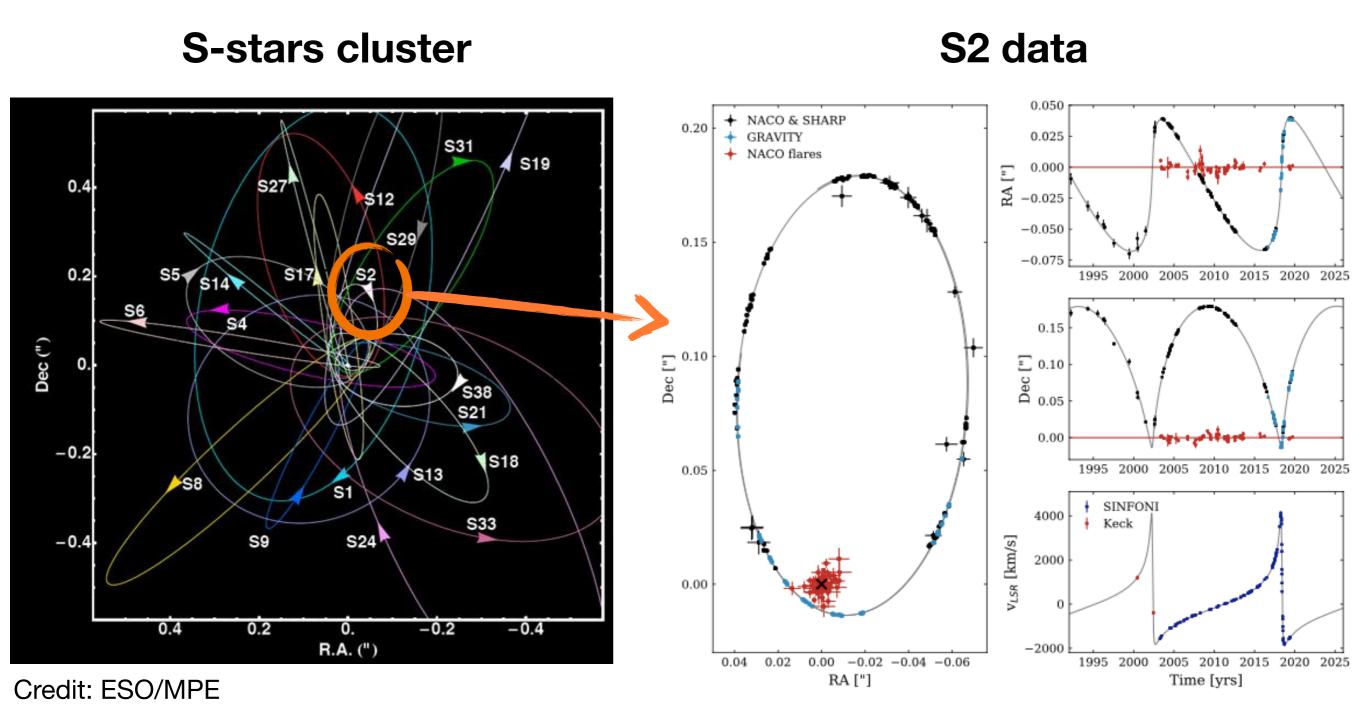


Very Large Telescope@MPE

Keck Observatory@UCLA

Data sources

Imaging and astrometric measurements @ Keck Spectroscopy and radial velocity measurements @Keck @VLT



GRAVITY Coll., 2020, A&A 636 L5

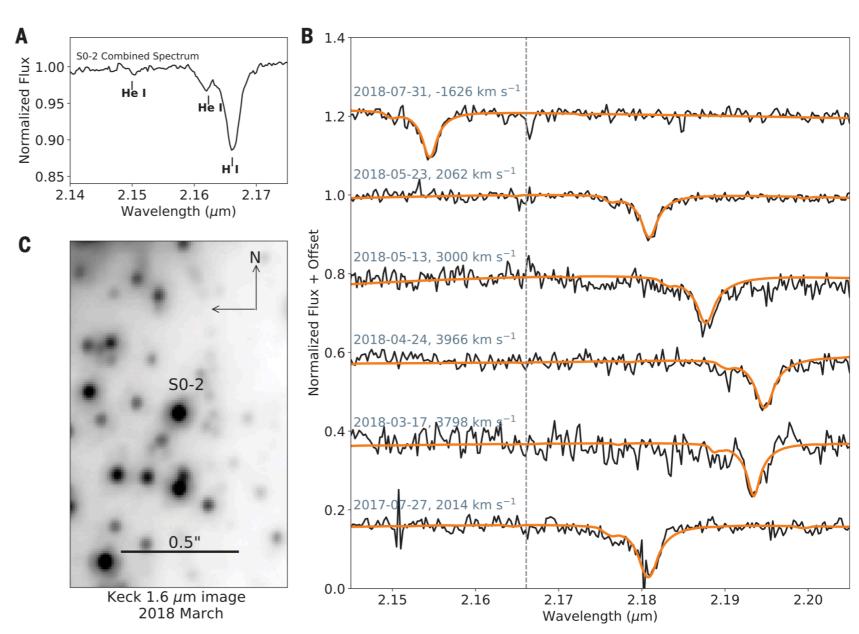
Dataset

Available Data for star S2:

- \circ Astrometry($\sigma \sim 50 \,\mu \mathrm{as}$)
- NIRC on Keck I (1995-2005);
- AO imaging with NIRC2 on Keck II (2005-2018).
- Spectroscopy and RV

 $(\sigma \sim 20 \text{ km/s})$

- NIRSPEC/NIRC2/OSIRIS@Keck;
- SINFONI@VLT.
- NIFS@Gemini;
- IRCS@Subaru;



Tuan Do, et al, Science (2019)

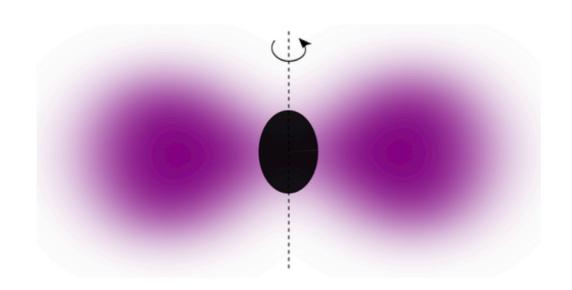
Black Hole-Scalar System

$$S = \int d^4 x \sqrt{-g} \left(\frac{R}{16\pi} - \frac{1}{2} g^{\alpha\beta} \Phi_{,\alpha}^* \Phi_{,\beta}^* - \frac{\mu_s^2}{2} \Phi \Phi^* \right), \quad \text{Mass coupling: } \zeta = \frac{r_g}{\lambda_C} = \mu_s M_{\bullet} \sim \mathcal{O}(10^{-3})$$

For $\alpha \ll 1$, the fundamental mode of the field $(\ell = m = 1)$ is given by (Brito et al. 2015)

$$(G = c = \hbar = 1)$$

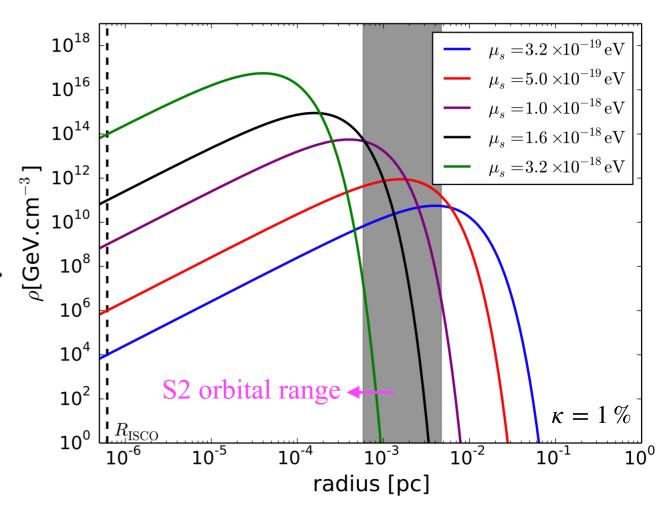
$$\Phi = C_0 e^{-i(\bar{\omega}_R \bar{t} - \varphi)} \bar{r} \zeta^2 e^{-\frac{\bar{r}\zeta^2}{2}} \sin \theta.$$



Black Hole-Scalar System

$$S = \int d^4 x \sqrt{-g} \left(\frac{R}{16\pi} - \frac{1}{2} g^{\alpha\beta} \Phi_{,\alpha}^* \Phi_{,\beta}^* - \frac{\mu_s^2}{2} \Phi \Phi^* \right), \quad \text{Mass coupling: } \zeta = \frac{r_g}{\lambda_C} = \mu_s M_{\bullet} \sim \mathcal{O}(10^{-3})$$

For $\alpha \ll 1$, the fundamental mode of the field $(\ell = m = 1)$ is given by (Brito et al. 2015)



Frequency Shift Induced by SM-ULDM Interaction

$$E_n = -\frac{\mu e^4}{2 (4\pi\epsilon_0)^2 \hbar^2} \frac{1}{n^2} \simeq -\frac{m_e c^2}{2} \frac{\alpha^2}{n^2}$$

Higgs portal interaction:

$$\mathcal{L}_{\Phi H} = \beta |\Phi|^2 |H|^2,$$

The Higgs vacuum expectation value:

$$v = v_{\text{ew}} \sqrt{1 - \frac{2\beta}{m_H^2} \frac{\rho(r)}{2\mu_s^2}} \approx v_{\text{ew}} \left(1 - \frac{\beta}{m_H^2} \frac{\rho(r)}{2\mu_s^2} \right), \qquad \alpha = \alpha_0 \left(\frac{1}{1 - q v_{\Phi}^2} \right) \approx \alpha_0 (1 + g \frac{\rho}{2\mu_s^2}).$$

$$m_e pprox m_e^{\mathrm{bare}} \left(1 - rac{eta}{m_H^2} rac{
ho(r)}{2\mu_s^2}
ight),$$

Photon portal interaction:

$$\mathcal{L}_{\Phi\gamma} = \frac{g}{4} |\Phi|^2 F^2,$$

The fine structure constant:

$$\alpha = \alpha_0 \left(\frac{1}{1 - gv_{\Phi}^2} \right) \approx \alpha_0 (1 + g \frac{\rho}{2\mu_s^2})$$

Energy shift and radial velocity:

$$\left[\frac{\delta V_{mn}}{V_{mn}}(r)\right]_{\Phi H} \approx \frac{\delta m_e}{m_e} \approx \frac{\beta}{m_H^2} \frac{\rho(r)}{2\mu_s^2}.$$

$$\left[\frac{\delta V_{mn}}{V_{mn}}(r)\right]_{\Phi\gamma} \approx \frac{2\delta\alpha}{\alpha} \approx 2g\frac{\rho(r)}{2\mu_s^2}.$$

Method

Corrections to the post-Newtonian equation

[C.M.Will, et al, PRD (2017); Tuan Do, et al. Science (2019)]

$$\frac{dr^2}{dt^2} = -\frac{GM(r)}{r^3}\mathbf{r} + \frac{GM(r)}{c^2r^3}(4\frac{GM(r)}{r} - v^2)\mathbf{r} + 4\frac{GM(r)(\mathbf{r} \cdot \mathbf{v})}{c^2r^3}\mathbf{v}$$

With enclosed mass $M(r) = M_{\bullet} + M_{\text{cloud}} + Ar^{1.6}$

$$\mathbf{r}(t) \equiv (X(t), Y(t), Z(t)); \mathbf{v}(t) \equiv (V_X(t), V_Y(t), V_Z(t))$$

$$X(t_p) = -r_p \sin \omega \cos I \sin \Omega + r_p \cos \omega \cos \Omega,$$

$$Y(t_p) = r_p \sin \omega \cos I \cos \Omega + r_p \cos \omega \sin \Omega,$$

$$Z(t_p) = -r_p \sin \omega \sin I,$$

$$V_X(t_p) = -v_p \cos \omega \cos I \sin \Omega - v_p \sin \omega \cos \Omega,$$

$$V_Y(t_p) = v_p \cos \omega \cos I \cos \Omega - v_p \sin \omega \sin \Omega,$$

$$V_Z(t_p) = -v_p \cos \omega \sin I.$$

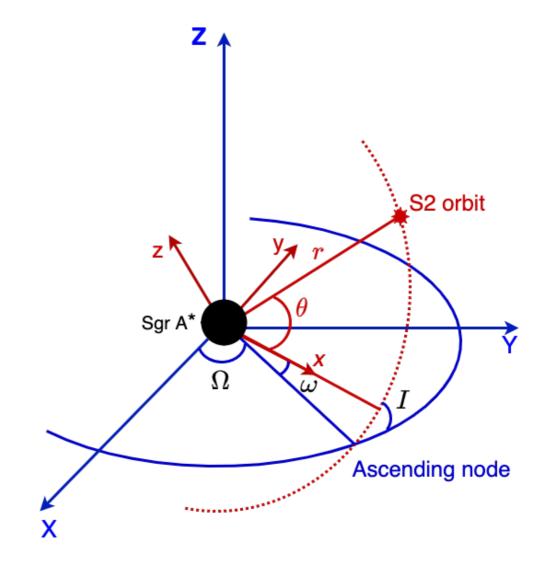
$$t_{\rm em} = t_{\rm obs} + \frac{Z(t_{\rm obs})}{c}.$$

$$\alpha_*(t_{\rm obs}) = \frac{Y(t_{\rm em})}{R_0} + \alpha_{\rm BH} + v_{\alpha} \cdot (t_{\rm em} - t_{\rm J2000}),$$

$$\delta_*(t_{\rm obs}) = \frac{X(t_{em})}{R_0} + \delta_{\rm BH} + v_{\delta} \cdot (t_{\rm em} - t_{\rm J2000}),$$

$$v_r(t_{\text{obs}}) = V_Z(t_{\text{em}}) + v_{r0} + \left[\frac{V_Z^2(t_{\text{em}})}{2c} + \frac{GM}{c r(t_{\text{em}})}\right] + \Delta V_r,$$

the correction of relativity



 v_p , r_p are the velocity and radius at time t_p :

$$(a, e, P, I, \Omega, \omega) \longrightarrow (r_p, v_p, t_p, I, \Omega, \omega)$$

Method

Markov Chain Monte Carlo emcee (Foreman-Mackey et al. 2013) Python package

We need to sample $P(\theta \mid D) \propto P(D \mid \theta)P(\theta)$ for different fixed values of α

$$D = \text{data set}$$

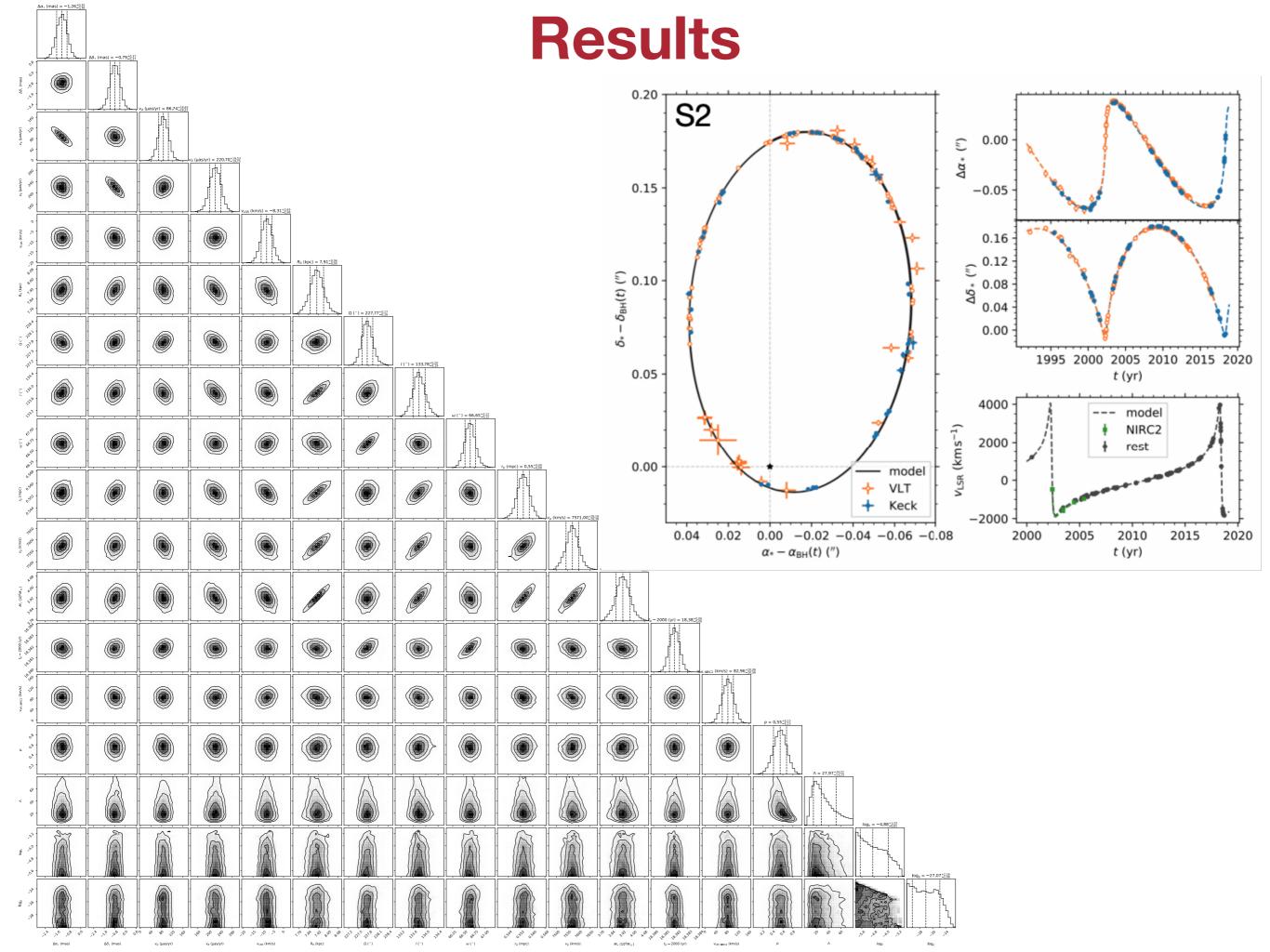
$$\theta_i = \{M_\bullet, R_0, \alpha_{\rm BH}, \beta_{\rm BH}, v_\alpha, v_\beta, t_p, r_p, v_p, I, \omega, \Omega, p, \Lambda, \text{offset}, \kappa, \beta\}$$
 BH Mass and GC distance SMBH Position Keplerian elements System Cloud's Interaction fractional mass

Astrometric measurements:
$$L_{\rm astro} \propto \frac{1}{\sqrt{(|\mathbf{\Sigma}_{\alpha}||\mathbf{\Sigma}_{\delta}|)}} \exp\left[-\frac{1}{2}\left(\Delta \boldsymbol{\alpha}^T \mathbf{\Sigma}_{\alpha}^{-1} \Delta \boldsymbol{\alpha} + \Delta \boldsymbol{\delta}^T \mathbf{\Sigma}_{\delta}^{-1} \Delta \boldsymbol{\delta}\right)\right]$$

Radial velocities:
$$-2 \ln L_{\rm RV} = \chi_{\rm RV}^2 = \sum_j \left(\frac{v_{r,j} - \mu_{v_r}(t_j)}{\sigma_{v_r,j}} \right)^2$$

 $P(D \mid \theta)$ = Gaussian Likelihood

 $P(\theta)$ = **Uniform** priors for physical parameters, **Gaussian** priors for SMBH position, Keplerian elements.



Case I

D	Dood C4	Destaria manage 11
Parameter	Best fit	Posterior mean $\pm 1\sigma$
$M_{\bullet} (10^6 \ M_{\odot})$	3.91	3.92 ± 0.05
R_0 (kpc)	7.90	7.90 ± 0.05
$\alpha_{ m BH}$ (mas)	-1.38	$-1.27^{+0.35}_{-0.36}$
$\delta_{ m BH}$ (mas)	-0.75	$0.79^{+0.38}_{-0.37}$
$v_{\alpha} \; ({\rm mas yr^{-1}})$	94	87^{+19}_{-18}
$v_{\delta} \; ({ m mas \; yr^{-1}})$	220	221 ± 20
$v_{r0} ({\rm km s^{-1}})$	-6.3	-8.3 ± 2.7
$r_p(10^{-3} \text{ pc})$	0.554	0.554 ± 0.004
$v_p (\mathrm{km} \mathrm{s}^{-1})$	7559	7571^{+28}_{-29}
t_p (yr)	2018.3818	2018.3818 ± 0.0004
<i>I</i> (°)	133.80	133.78 ± 0.20
ω (°)	66.70	66.66 ± 0.12
Ω (°)	227.83	227.77 ± 0.16
offset $(km s^{-1})$	77	83^{+20}_{-21}
p	0.70	0.54 ± 0.13
Λ (mas)	13	32^{+20}_{-17}
$\log_{10} \kappa$	-4.45	$-4.79_{-0.90}^{+0.96}$
$\log_{10} eta$	-24.89	$-27.0^{+2.1}_{-2.2}$
μ_s (eV)	10^{-18}	-2.2
$-2 \ln \mathcal{L}_{\text{tot}}$	-14.77	

Case I: the SMBH + scalar field

$$M(r) = M_{\bullet} + 2\pi \int_{r_{\rm ISCO}}^{r} r'^2 \mathrm{d}r' \int_{0}^{\pi} \sin \theta' \mathrm{d}\theta' \rho(r', \theta'),$$

Mass distribution of scalar field:

$$\rho = \frac{1}{2} \mu_s^2 |\Phi|^2 = \frac{1}{2} \mu_s^2 \left(C_0^2 \zeta^4 e^{-\zeta^2 \bar{r}} \bar{r}^2 \sin^2 \theta \right).$$

$$\kappa = rac{M_{
m cloud}}{M_{ullet}} = rac{\int
ho r^2 \sin heta dr d heta darphi}{M_{ullet}}.$$

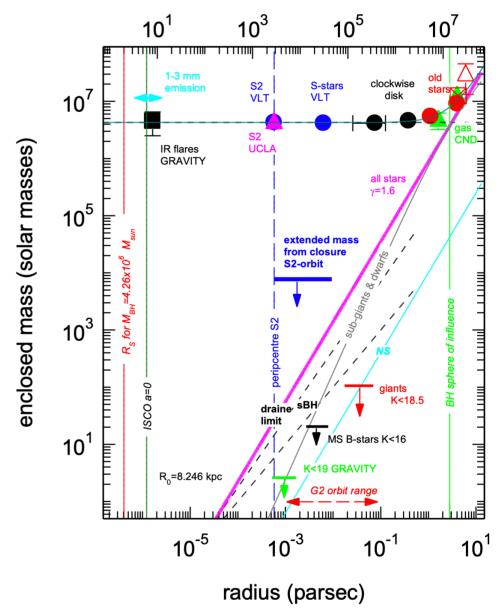
Case	II
------	----

Parameter	Best fit	Posterior mean $\pm 1\sigma$
$M_{\bullet} (10^6 M_{\odot})$	3.90	3.92 ± 0.05
R_0 (kpc)	7.89	7.91 ± 0.05
$\alpha_{\rm BH}$ (mas)	-1.28	-1.22 ± 0.33
$\delta_{ m BH}$ (mas)	-0.87	-0.75 ± 0.37
$v_{\alpha} \; ({\rm mas yr^{-1}})$	86	85 ± 18
$v_{\delta} \; ({\rm mas yr^{-1}})$	231	218 ± 19
$v_{r0} ({\rm km s^{-1}})$	-8.1	-8.7 ± 2.8
$r_p(10^{-3} \text{ pc})$	0.552	0.554 ± 0.003
$v_p (\mathrm{km} \mathrm{s}^{-1})$	7559	7573^{+27}_{-26}
t_p (yr)	2018.3819	2018.3818 ± 0.0004
\vec{I} (°)	133.70	133.80 ± 0.18
ω (°)	66.65	66.66 ± 0.12
Ω (°)	227.73	227.79 ± 0.17
offset $(km s^{-1})$ 81		83^{+19}_{-20}
p	0.62	$0.54_{-0.13}^{+0.14}$
Λ (mas)	16	31_{-17}^{+19}
$\log_{10} \kappa$	-5.51	$-4.82^{+0.95}_{-0.89}$
$\log_{10}oldsymbol{eta}$	-24.88	$-26.81^{+2.11}_{-2.20}$
μ_s (eV)	10^{-18}	-2.20
$-2 \ln \mathcal{L}_{\text{tot}}$	-14.21	

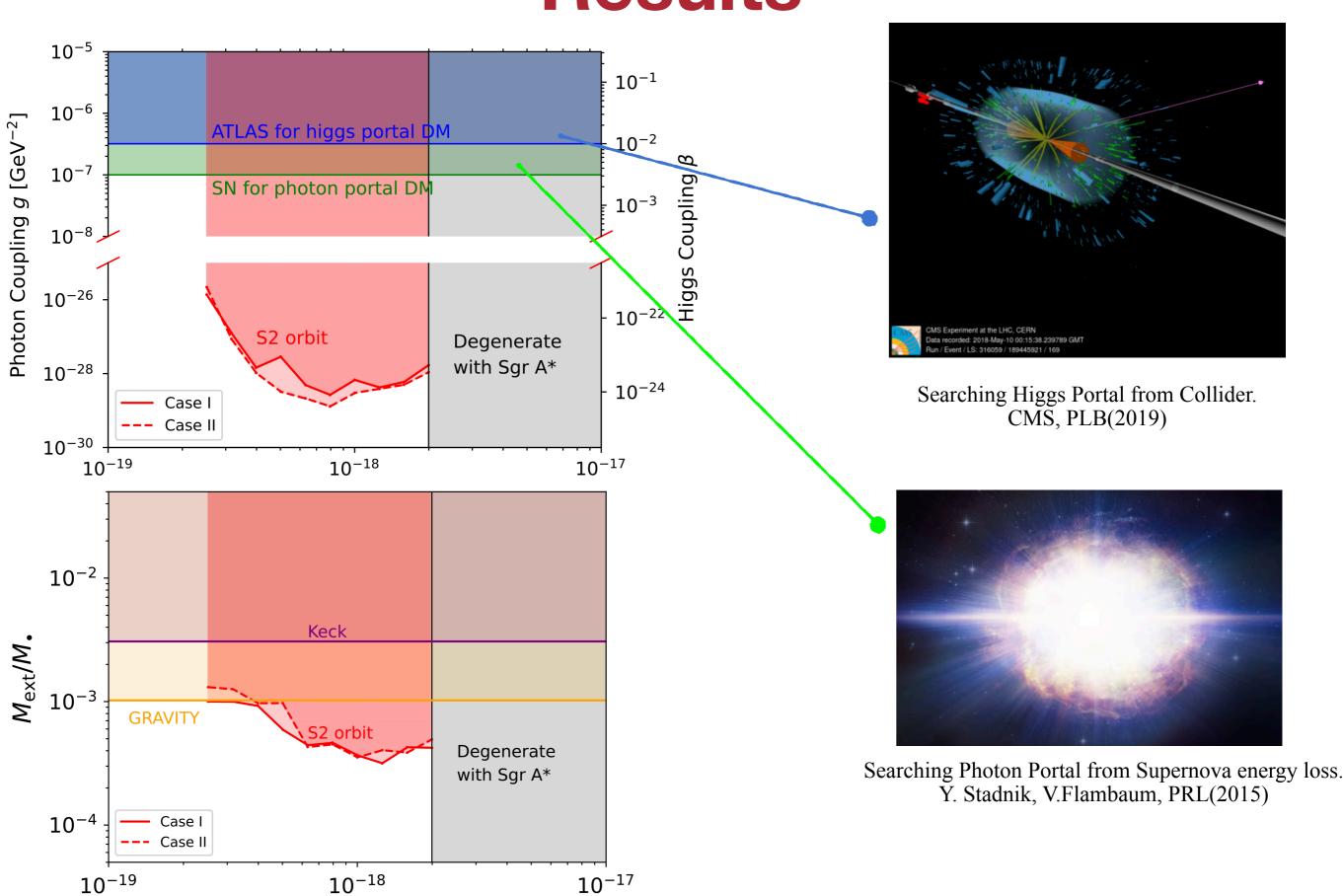
Case II: the SMBH + scalar field + astrophysical background

$$M(r) = M_{\bullet} + Ar^{1.6} + 2\pi \int_{r_{\rm ISCO}}^{r} r'^2 \mathrm{d}r' \int_{0}^{\pi} \sin \theta' \mathrm{d}\theta' \rho(r', \theta'),$$

$$R/R_g(4.26 \times 10^6 M_{sun})$$



Astrophysical background around Galactic center credited by *GRAVITY A&A(2020)*



 μ_s [eV]

Summary of the results

- o ULDM is a well motivated candidate for dark matter, S2 orbit only sensitive to constrain the scalar mass window $3.2\times10^{-19}\lesssim\mu_{s}\lesssim1.6\times10^{-18}\mathrm{eV}$
- $^{\rm O}$ The Higgs portal coupling 95% upper limit ($\beta < \mathcal{O}(10^{-24})$ at $\mu_s \simeq 10^{-18} {\rm eV}$) is much stronger than the ATLAS limit
- O The photon portal coupling 95% upper limit ($g < \mathcal{O}(10^{-28}) {\rm GeV}^{-2}$ at $\mu_s \simeq 10^{-18}$ eV) is much stronger than the limit obtained by supernova energy loss arguments

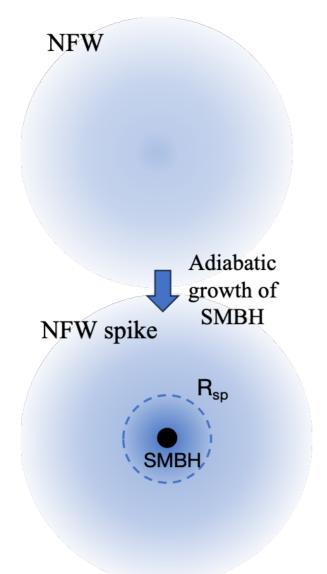
- The upper limits of the extended mass of scalar cloud is $\sim 3 \times 10^{-4} M_{\bullet}$, which statistically agrees with the scenario of point-like mass of SgrA*
- \circ The astrophysical power law component ($\sim 1200 M_{\odot}$ enclosed in S2's orbit) only has a relatively small impact on the parameters of ULDM model.

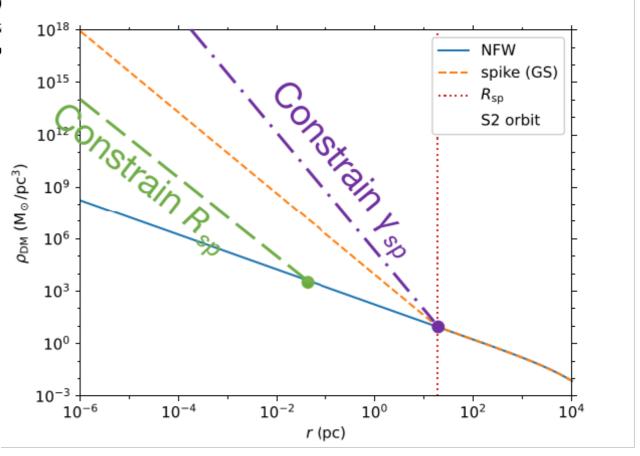
MNRAS **527**, 3196–3207 (2024) Advance Access publication 2023 October 26

Exploring dark matter spike distribution around the Galactic centre with stellar orbits

Zhao-Qiang Shen,¹ Guan-Wen Yuan [®],¹,² Cheng-Zi Jiang,²,³ Yue-Lin Sming Tsai,¹★ Qiang Yuan [®]1,² and Yi-Zhong Fan¹,²★

³Key Laboratory of Planetary Sciences, Purple Mountain Observato



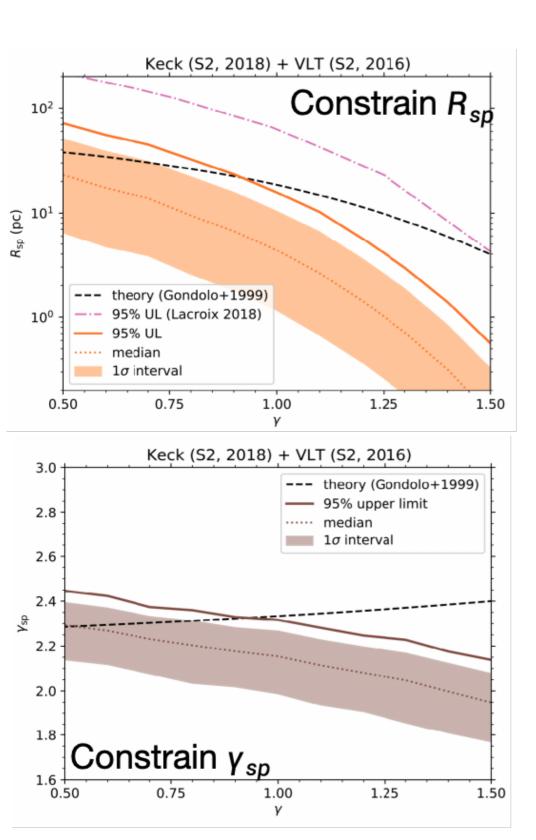


We set two types of constraints:

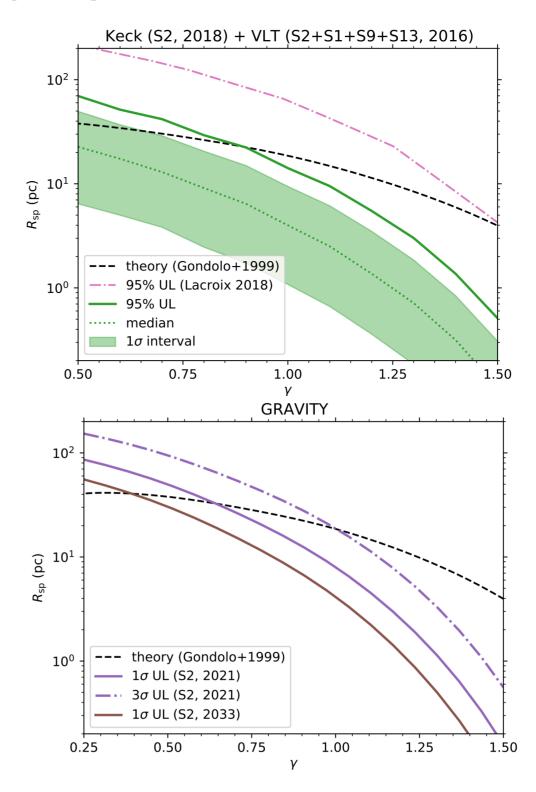
- \circ Constraint the spike radius $r_{\rm sp}$
- o Constraint the spike slope $\gamma_{\rm sp}$

¹Key Laboratory of Dark Matter and Space Astronomy, Purple Mou

²School of Astronomy and Space Sciences, University of Science and



- $R_{sp} < 15.7$ pc for NFW spike at 95% CL
- $y_{sp} < 2.32$ for NFW spike at 95% CL
- The GS spike model is disfavoured at 95% when the initial slope y > 0.92



- The upper limits on the spike radius $R_{\rm sp}$ between S2 only and the four S-stars are negligible.
- the surviving NFW spike infer the 95% lower limit of $\langle \sigma v \rangle \gtrsim 7.7 \times 10^{-27} \text{cm}^3 \text{s}^{-1} \times (m_{\text{DM}}/100 \text{GeV}) (10 \text{Gyr}/\tau_{\text{BH}})$

Summary of the results

- o High precision astrometry observation of SMBHs, especially stellar dynamics, provide an unique way to test "new physics" around strong gravity region.
- o Different dark matter candidates have predicted different effects, we search for their potential signals by the stellar dynamics around SgrA*.
- o Regarding the ULDM, we set very strong constraints for the Higgs/Photon portal coupling, which are much stronger than other limits.

o Regarding the WIMP, we excluded the classic WIMP 'spike' proposed by Gondolo&Silk (1999), one of most import assumption for dark matter detection, with the observations of SgrA*

Thanks for your attention!