

IFT - UNESP

Pedro Meert

Rotational holographic transport in AdS/CMT 4th FLAG WORKSHOP: The quantum and gravity Sept 9-11, 2024 Catania

AdS/CMT

AdS/CFT correspondence

Duality between gravity theory in D+1 dimensions and CFT (without gravity) in D dimensional space-time.

> Couplings are inversely proportional: strong gravity \leftrightarrow weak field theory weak gravity \leftrightarrow strong field theory

Verified within string theory, canonical example $AdS_5 \times S^5 \leftrightarrow \mathcal{N} = 4$ SYM

More generally referred to as gauge/gravity duality. Essentially an extrapolation of the AdS/CFT correspondence, as we don't know one side of the theory.

(Conjectures that) Weakly coupled gravity at low energy, e.g. General Relativity, in asymptotically AdS background is dual to a strongly coupled approximately* conformal field theory in one lower dimension.

Black hole in the bulk brings the theory at the boundary to a non-zero temperature. The thermodynamics of the BH and field theory are the same.

AdS/CMT

*The theory becomes conformally invariant when the bulk is AdS.

Holographic Superconductors

PHYSICAL REVIEW D 78, 065034 (2008)

Sean A. Hartnoll^b, Christopher P. Herzog[#] and Gary T. Horowitz^h

$$
\mathcal{L} = \frac{1}{2\kappa^2} \left(R + \frac{d(d-1)}{L^2} \right) - \frac{1}{4g^2} F^2 - |\nabla \phi - iqA\phi|^2 - m^2 |\phi|^2 - V(|\phi|)
$$

Breaking an Abelian gauge symmetry near a black hole horizon

Steven S. Gubser

Lectures on holographic methods for condensed matter physics

Sean A Hartnoll

Holographic Superconductors

PHYSICAL REVIEW D 78, 065034 (2008)

$$
\mathcal{L} = \frac{1}{2\kappa^2} \left(R + \frac{d(d-1)}{L^2} \right) - \frac{1}{4g^2} F^2 - |\nabla \phi - iqA\phi|^2 - m^2 |\phi|^2 - V(|\phi|)
$$

Breaking an Abelian gauge symmetry near a black hole horizon

Lectures on holographic methods for condensed matter physics

$$
\mathcal{L} = \frac{1}{2\kappa^2} \left(R + \frac{6}{L^2} \right) - \frac{1}{4g^2} F^2 - \left| \left(\nabla - iqA \right) \phi \right|^2 - m^2 \left| \phi \right|^2
$$

- Negative cosmological constant, $d = 3$, $V = 0$.
- Scalar field ϕ is associated with the order parameter, distinguishing the normal and superconducting phases.
- The electromagnetic field introduces another scale, setting the critical temperature. It is also used to compute the conductivity as it describes a conserved current.

General model

$$
\phi(r) \simeq \frac{\phi^{(1)}}{r} + \frac{\phi^{(2)}}{r^2} + \dots
$$

$$
A_0(r) \simeq \mu - \frac{\rho}{r} + \dots
$$

Probe approximation: use gravity as background. Generically, the asymptotic form of the solutions read:

-
-
- VEVs for operators (condensates)
- Chemical potential and charge density

 $\langle \mathcal{O}_i \rangle \sim \phi^{(i)}$

Conductivity:

Asymptotic solution form *Ax* $= A_x^{(0)}$ $\frac{\langle J_x \rangle}{r}$ *r* Introduce the perturbation $\delta A_x = \delta A_x(r) e^{i\omega t}$

Linear response for electric current $\sigma(\omega)$ =

+ … $\langle J_{x}\rangle$ *iωA*(0) *x*

Conductivity:

Asymptotic solution form *Ax* $= A_x^{(0)}$ $\frac{\langle J_x \rangle}{r}$ *r* Introduce the perturbation $\delta A_x = \delta A_x(r) e^{i\omega t}$

Linear response for electric current $\sigma(\omega)$ =

$$
Gap: \frac{\hbar \omega}{k_B T_C} \simeq \xi
$$

Conductivity:

Asymptotic solution form *Ax* $= A_x^{(0)}$ $\frac{\langle J_x \rangle}{r}$ *r* Introduce the perturbation $\delta A_x = \delta A_x(r) e^{i\omega t}$

Linear response for electric current $\sigma(\omega)$ =

Gap for BCS:
$$
\frac{\hbar \omega}{k_B T_C} \simeq 8.4
$$

Gap for BCS:

\n
$$
\frac{\hbar \omega}{k_B T_C} \simeq 3.5
$$

- Superconducting instability (scalar field)
- Critical temperature (chemical potential)
- Conductivity (breaking translation invariance of gauge field)
- Energy gap ~ 8

Summary:

- Superconducting instability (scalar field)
- Critical temperature (chemical potential)
- Conductivity (breaking translation invariance of gauge field)
- Energy gap ~ 8

High T_c superconductor?

Summary:

AdS-Kerr-Newman black hole: rotating, electrically charged black hole solution including the negative cosmological constant.

Mass *m* Electric AdS rad Angula Event horizon r_+ such that $\Delta_r(r_+) = 0$

$$
ds^{2} = -\frac{\Delta_{r}}{\rho^{2}} \left[dt - \frac{a}{\Xi} \sin^{2} \theta d\phi \right]^{2} + \frac{\rho^{2}}{\Delta_{r}} dr^{2} + \frac{\rho^{2}}{\Delta_{\theta}} d\theta^{2} + \frac{\sin^{2} \theta \Delta_{\theta}}{\rho^{2}} \left[a dt - \frac{(r^{2} + a^{2})}{\Xi} d\phi \right]^{2}
$$

$$
A = -\frac{Qr}{\rho^{3}} \left(dt - \frac{a}{\Xi^{2}} \sin^{2} \theta d\phi \right)
$$

n
c charge *Q*
c charge *Q*
dius *l*
or momentum density *a*
or momentum density *a*
forizon *r*₊ such that $\Delta_{r}(r_{+}) = 0$

$$
\Delta_{\theta} = 1 - l^{-2} a^{2} \cos^{2} \theta
$$

$$
\Delta_{\theta} = 1 - l^{-2} a^{2}
$$

 $\beta \equiv T^{-1} =$ $4\pi (r_+^2 + a^2)$ r_{+} (1 + $a^{2}l^{-2}$ + $3r_{+}^{2}l^{-2}$ – $(a^{2} + Q^{2})r_{+}^{-2}$) Temperature Entropy

AdS-Kerr-Newman thermodynamics:

 $S =$ $\pi(r_{+}^{2} + a^{2})$ Ξ

$$
J = \frac{am}{E^2} \qquad M = \frac{m}{E^2} \qquad Q = \frac{Q}{E}
$$

Conserved charges "Thermodynamic" angular velocity

 $\Omega = \lim$ $r \rightarrow r_+$ *ω* − lim *r*→∞ $\omega =$ $a(1 + r_+^2 l^{-2})$ $\begin{array}{c} \end{array}$ $r_+^2 + a^2$

 $\left[\frac{2}{4}+a^2\right]$ = $\beta G(T,\Omega,\Phi)$ ← Gibbs free energy

$$
I = \frac{\beta}{4l^2\Xi} \left[-r_+^3 + l^2 \Xi r_+ + \frac{l^2 \left(a^2 + Q^2\right)}{r_+} + \frac{2l^2 Q^2 r_+}{\left(r_+^2 + a^2\right)} \right]
$$

Thermodynamic potential

 $\beta \equiv T^{-1} =$ $4\pi (r_+^2 + a^2)$ r_{+} (1 + $a^{2}l^{-2}$ + $3r_{+}^{2}l^{-2}$ – $(a^{2} + Q^{2})r_{+}^{-2}$) Temperature Entropy

AdS-Kerr-Newman thermodynamics:

 $S =$ $\pi(r_{+}^{2} + a^{2})$ Ξ

$$
J = \frac{am}{E^2} \qquad M = \frac{m}{E^2} \qquad Q = \frac{Q}{E}
$$

$$
\Omega = \lim_{r \to r_+} \omega \leftarrow \lim_{r \to \infty} \omega \leftarrow \frac{a \left(1 + r_+^2 l^{-2}\right)}{r_+^2 + a^2}
$$

$$
\neq 0 \text{ in AdS}^+
$$

 $\left[\frac{2}{4}+a^2\right]$ = $\beta G(T,\Omega,\Phi)$ ← Gibbs free energy

Conserved charges "Thermodynamic" angular velocity

$$
I = \frac{\beta}{4l^2\Xi} \left[-r_+^3 + l^2 \Xi r_+ + \frac{l^2 \left(a^2 + Q^2\right)}{r_+} + \frac{2l^2 Q^2 r_+}{\left(r_+^2 + a^2\right)} \right]
$$

Thermodynamic potential

Can only solve numerically.

Charged scalar in AdS-KN background. \mathscr{L} −*g* $=-\frac{1}{4}$ 4 $F^2 - \frac{1}{2}$ $\frac{1}{2}$ $\left(\left(D - m_{\phi}\right)\phi\right)$ 2

Potential changes according to rotation:

Ref.: Sonner, J, Phys. Rev. D 80, 084031

Can only solve numerically.

Charged scalar in AdS-KN background. \mathscr{L} −*g* $=-\frac{1}{4}$ 4 $F^2 - \frac{1}{2}$ $\frac{1}{2}$ $\left(\left(D - m_{\phi}\right)\phi\right)$ 2

Potential changes according to rotation:

Rotation suppresses super conducting phase!

$$
\alpha = a l^{-1}
$$

*T*₀ critical temperature for $a = 0$

Ref.: Sonner, J, Phys. Rev. D 80, 084031

Transport coefficients

Holographic transport coefficients can be computed using linear response theory.

One introduces a perturbation in the bulk that couples to an operator at the boundary theory, we mentioned the electric conductivity

 $\delta \mathcal{J} = \sigma \delta E$

The moment of inertia is similar

Only depends on the thermodynamics of the black hole, and we know these quantities exactly

δJ = *Iδ*Ω

However…

$$
\Omega = \frac{a(1 + r_+^2 l^{-2})}{r_+^2 + a^2}
$$

$$
J = \frac{am}{\Xi^2}
$$

Are given in terms of the black hole parameters

Need to use approximations and numerical methods to obtain thermodynamics

$$
G = G(T, \Omega, \mathcal{Q}) \implies
$$
\n
$$
G = G(T, \Omega, \mathcal{Q}) \implies
$$
\n
$$
a = a(T, \Omega, \mathcal{Q})
$$
\n
$$
Q = Q(T, \Omega, \mathcal{Q})
$$

Exact solution (probably) impossible

Solve for r_+ approximating for $T \approx 0$, black hole close to extremality

Numerically solve for the angular momentum density a, then compute the thermodynamics.

$$
T(r_0 + \delta r) \approx A(a, Q) \delta r
$$
, $r_+ \mapsto r_0 + \delta r$ $T(r_0) = 0$
Charges Q and Q are trivially solved $r = \sqrt{a^4 + l^4 + 14a^2l^2 + 11}$

$$
Q = \frac{Q}{E}
$$

\n
$$
A(a,Q) = \frac{3\left[\eta^2 - \eta\left(a^2 + l^2\right)\right]}{l^2 \pi \left(l^2 - 5a^2 - \eta\right)\left(a^2 + l^2 - \eta\right)}
$$

Solve for r_+ approximating for $T \approx 0$, black hole close to extremality

Numerically solve for the angular momentum density a, then compute the thermodynamics.

$$
T(r_0 + \delta r) \approx A(a, Q) \delta r,
$$
 $r_+ \mapsto r_0 + \delta r$ $T(r_0) = 0$

$$
Q = \frac{Q}{E}
$$

\n
$$
A(a,Q) = \frac{3\left[\eta^2 - \eta\left(a^2 + l^2\right)\right]}{l^2 \pi \left(l^2 - 5a^2 - \eta\right)\left(a^2 + l^2 - \eta\right)}
$$

 $l = 100$, or $\Lambda \sim 10^{-2}$

Charges Q and Q are trivially solved

Solve for r_+ approximating for $T \approx 0$, black hole close to extremality

Numerically solve for the angular momentum density a, then compute the thermodynamics.

Charges *Q* and are trivially solved

$$
T(r_0 + \delta r) \approx A\left(a, Q\right)\delta r,
$$

\n
$$
r_+ \mapsto r_0 + \delta r
$$

\n
$$
T(r_0) = 0
$$

\n
$$
r_+ \mapsto r_0 + \delta r
$$

\n
$$
T(r_0) = 0
$$

\n
$$
r_+ \mapsto r_0 + \delta r
$$

\n
$$
r_+ \mapsto r_0 + \delta r
$$

\n
$$
r_+ \mapsto r_0 + \delta r
$$

\n
$$
r_+ \mapsto r_0 + \delta r
$$

$$
\mathcal{Q} = \frac{Q}{E}
$$
\n
$$
A(a,Q) = \frac{3\left[\eta^2 - \eta\left(a^2 + l^2\right)\right]}{l^2\pi\left(l^2 - 5a^2 - \eta\right)\left(a^2 + l^2 - \eta\right)}
$$

 $l = 100$, or $\Lambda \sim 10^{-2}$

Conclusions

- For an electrically charged system the moment of inertia changes slightly as the temperature is increased from zero.
- More interesting cases appear as charge is higher. This is expected as we are relaxing the rotation parameter, given the low-temperature regime. However this might be unrealistic.
- Work in progress: considering the interaction of the rotating holographic SC with magnetic field.
- It is not clear how to compute the conductivity, as it requires breaking of translation invariance.

Thank you!

arXiv: 2402.04194

A microscopic model..?

From "Holographic superconductors" by Hartnol, Horowitz and Herzog: Second, **there is a natural way to promote our phenomenological holographic superconductor into a full microscopic description: If we had realised our model as a limit of string theory**, then the potential for ψ would be completely fixed and there would be no free parameters. **We would have a concrete CFT that underwent a superconducting phase transition at a critical temperature specified by the background charge density.** Furthermore, in this theory, the AdS/CFT correspondence allows us to compute all the quantities for this superconductor which would normally follow from a BCS-like treatment: the gap as a function of temperature, the frequency dependent conductivity, the magnetic penetration depth, etc. We have shown how to use AdS/CFT to compute these quantities in this paper and we see that the 'feel' of the computation is completely different from weakly coupled BCS-like theories. **Nonetheless, AdS/CFT applied to a model embedded in string theory would be an honest-to-goodness microscopic computation of these quantities in a well-defined theory.**

JHEP12 (2008) 015, pp. 35-36

A little more about the SC instability

- In AdS the mass of the scalar field can be negative, this is what triggers the instability of the scalar field.
- The near horizon geometry normally is AdS space-time in less dimensions than the boundary, this allows for a range of masses where the scalar field is unstable near the horizon, but is stable at the boundary.

