
Pedro Meert

Rotational holographic 
transport in AdS/CMT

4th FLAG WORKSHOP: The quantum and gravity 
Sept 9-11, 2024 

Catania



AdS/CMT
AdS/CFT correspondence 

Duality between gravity theory in D+1 dimensions and CFT (without gravity) in D dimensional 
space-time. 

Couplings are inversely proportional: 
strong gravity  weak field theory 
weak gravity  strong field theory 

Verified within string theory, canonical example 

↔
↔

AdS5 × S5 ↔ 𝒩 = 4 SYM



  

More generally referred to as gauge/gravity duality. Essentially an extrapolation of the AdS/CFT 
correspondence, as we don’t know one side of the theory. 

(Conjectures that) Weakly coupled gravity at low energy, e.g. General Relativity, in asymptotically 
AdS background is dual to a strongly coupled approximately* conformal field theory in one lower 

dimension. 

Black hole in the bulk brings the theory at the boundary to a non-zero temperature. 
The thermodynamics of the BH and field theory are the same.

AdS/CMT

*The theory becomes conformally invariant when the bulk is AdS.



Holographic superconductor

Graphene conductivity experiment 
Nature Physics 4, 532 (2008)



Holographic superconductor

Graphene conductivity experiment 
Nature Physics 4, 532 (2008)Conductivity calculated from 

holographic model



Holographic superconductor

ℒ =
1

2κ2 (R +
6
L2 ) −

1
4g2

F2 − (∇ − iqA) ϕ
2

− m2 ϕ
2

• Negative cosmological constant, , . 
• Scalar field  is associated with the order parameter, distinguishing the normal and 

superconducting phases. 
• The electromagnetic field introduces another scale, setting the critical temperature. It is also 

used to compute the conductivity as it describes a conserved current.

d = 3 V = 0
ϕ

General model



Holographic superconductor

ϕ (r) ≃
ϕ(1)

r
+

ϕ(2)

r2
+ …

Probe approximation: use gravity as background.

A0 (r) ≃ μ −
ρ
r

+ …

Generically, the asymptotic form of the solutions read:

VEVs for operators (condensates)

Chemical potential and charge density

⟨𝒪i⟩ ∼ ϕ(i)

μ ∼ A(0)
0 , ρ ∼ A(1)

0



Asymptotic solution form Ax = A(0)
x + ⟨Jx⟩

r
+ …

Holographic superconductor
Conductivity:

Introduce the perturbation δAx = δAx (r) eiωt

Linear response for electric current σ (ω) = ⟨Jx⟩
iωA(0)

x



Asymptotic solution form Ax = A(0)
x + ⟨Jx⟩

r
+ …

Holographic superconductor
Conductivity:

Introduce the perturbation δAx = δAx (r) eiωt

Linear response for electric current σ (ω) = ⟨Jx⟩
iωA(0)

x

Gap: 
ℏω

kBTC
≃ 8.4



Asymptotic solution form Ax = A(0)
x + ⟨Jx⟩
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Holographic superconductor
Conductivity:

Introduce the perturbation δAx = δAx (r) eiωt

Linear response for electric current σ (ω) = ⟨Jx⟩
iωA(0)

x

Gap: 
ℏω

kBTC
≃ 8.4

Gap for BCS: 
 

ℏω
kBTC

≃ 3.5



Holographic superconductor
Summary: 
• Superconducting instability (scalar field) 
• Critical temperature (chemical potential) 
• Conductivity (breaking translation invariance of gauge field) 
• Energy gap ∼ 8



Holographic superconductor
Summary: 
• Superconducting instability (scalar field) 
• Critical temperature (chemical potential) 
• Conductivity (breaking translation invariance of gauge field) 
• Energy gap ∼ 8

High  superconductor?TC



Rotating holographic SC
AdS-Kerr-Newman black hole: rotating, electrically charged black hole solution including the 

negative cosmological constant. 

ds2 = −
Δr

ρ2 [dt −
a
Ξ

sin2 θdϕ]
2

+
ρ2

Δr
dr2 +

ρ2

Δθ
dθ2 +

sin2 θΔθ

ρ2 [adt − (r2 + a2)
Ξ

dϕ]
2

ρ2 = r2 + a2 cos2 θ

Δr = (r2 + a2) (1 + l−2r2) − 2mr + Q2

Δθ = 1 − l−2a2 cos2 θ

Ξ = 1 − l−2a2

Mass  
Electric charge  
AdS radius  
Angular momentum density  
Event horizon  such that 

m
Q

l
a

r+ Δr (r+) = 0

A = −
Qr
ρ3 (dt −

a
Ξ2

sin2 θdϕ)



Rotating holographic SC
AdS-Kerr-Newman thermodynamics:

β ≡ T−1 =
4π (r2

+ + a2)
r+ (1 + a2l−2 + 3r2

+l−2 − (a2 + Q2) r−2
+ ) S =

π (r2
+ + a2)
Ξ

Ω = lim
r→r+

ω − lim
r→∞

ω =
a (1 + r2

+l−2)
r2

+ + a2
J =

am
Ξ2 𝒬 =

Q
Ξ

M =
m
Ξ2

Temperature Entropy

Conserved charges “Thermodynamic” angular velocity

I =
β

4l2Ξ [−r3
+ + l2Ξr+ +

l2 (a2 + Q2)
r+

+
2l2Q2r+

(r2
+ + a2) ] = βG (T, Ω, Φ)

Thermodynamic potential

Gibbs free energy←
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Rotating holographic SC
Charged scalar in AdS-KN background. 

 

Can only solve numerically. 

Potential changes according to rotation:

ℒ
−g

= −
1
4

F2 −
1
2 (D − mϕ) ϕ

2

 
 critical temperature for 

α = al−1

T0 a = 0

Ref.: Sonner, J, Phys. Rev. D 80, 084031



Rotating holographic SC
Charged scalar in AdS-KN background. 

 

Can only solve numerically. 

Potential changes according to rotation:

ℒ
−g

= −
1
4

F2 −
1
2 (D − mϕ) ϕ

2

Rotation suppresses super conducting 
phase!

 
 critical temperature for 

α = al−1

T0 a = 0

Ref.: Sonner, J, Phys. Rev. D 80, 084031



Rotating matter transport
Transport coefficients

Holographic transport coefficients can be computed using linear response theory. 

One introduces a perturbation in the bulk that couples to an operator at the boundary theory, 
we mentioned the electric conductivity 

 

The moment of inertia is similar 
 

Only depends on the thermodynamics of the black hole, and we know these quantities exactly

δ𝒥 = σδE

δJ = IδΩ



Rotating matter transport
However…

Ω =
a (1 + r2

+l−2)
r2

+ + a2

J =
am
Ξ2

Are given in terms of the black hole parameters

Need to use approximations and numerical methods to obtain thermodynamics

G = G (T, Ω, 𝒬) ⟹

r+ = r+ (T, Ω, 𝒬)
a = a (T, Ω, 𝒬)
Q = Q (T, Ω, 𝒬)

Exact solution (probably) 
impossible



Rotating matter transport
Solve for  approximating for , black hole close to extremalityr+ T ≈ 0

Charges  and  are trivially solvedQ 𝒬

Numerically solve for the angular momentum density , 
then compute the thermodynamics.

a

T (r0 + δr) ≈ A (a, Q) δr, r+ ↦ r0 + δr T(r0) = 0

A (a, Q) =
3 [η2 − η (a2 + l2)]

l2π (l2 − 5a2 − η) (a2 + l2 − η)

η = a4 + l4 + 14a2l2 + 12Q2l2

𝒬 =
Q
Ξ
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T = 0.1
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Rotating matter transport

𝒬 = 3 T = 0.1



Rotating matter transport
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Conclusions

• For an electrically charged system the moment of inertia changes slightly as the 
temperature is increased from zero. 

• More interesting cases appear as charge is higher. This is expected as we are 
relaxing the rotation parameter, given the low-temperature regime. However this 
might be unrealistic. 

• Work in progress: considering the interaction of the rotating holographic SC with 
magnetic field. 

• It is not clear how to compute the conductivity, as it requires breaking of translation 
invariance.



Thank you!

arXiv: 2402.04194



A microscopic model..?

From “Holographic superconductors” by Hartnol, Horowitz and Herzog:
 Second, there is a natural way to promote our phenomenological 
holographic superconductor into a full microscopic description: If we had 
realised our model as a limit of string theory, then the potential for ψ would be 
completely fixed and there would be no free parameters. We would have a 
concrete CFT that underwent a superconducting phase transition at a 
critical temperature specified by the background charge density. 
Furthermore, in this theory, the AdS/CFT correspondence allows us to compute 
all the quantities for this superconductor which would normally follow from a 
BCS-like treatment: the gap as a function of temperature, the frequency 
dependent conductivity, the magnetic penetration depth, etc. We have shown how 
to use AdS/CFT to compute these quantities in this paper and we see that the 
‘feel’ of the computation is completely different from weakly coupled BCS-like 
theories. Nonetheless, AdS/CFT applied to a model embedded in string 
theory would be an honest-to-goodness microscopic computation of these 
quantities in a well-defined theory.

JHEP12 (2008) 015, pp. 35-36



A little more about the SC instability

In AdS the mass of the scalar field can be negative, this is what triggers the instability of the scalar 
field. 

The near horizon geometry normally is AdS space-time in less dimensions than the boundary, this 
allows for a range of masses where the scalar field is unstable near the horizon, but is stable at the 

boundary.

m2 ≥ −
9

4L2

Breitenlohner - Freedman bound


