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Asymptotically Safe Gravity (Weinberg 1979; see Bonanno et al. 2020 for a review)

Reuter & Weyer (2004): observational footprints on astrophysical scales (cosmological, galactic)?

S

2

r > lPlanck

G(r) ~ Gy (1

)

Observational footprints around Kerr black holes?

O0<éx ]

(Reuter & Tuiran 2010; Haroon et al. 2018; Eichhorn & Held 2022; Sanchez 2024)

Co-rotating (a* = 0.98, £, = 0.0199) Counter-rotating (a* = 0.98, &, = 0.0199)
é Lisco g Lisco
0 1.6140 0 8.9437
0.010 1.4715 0.010 8.9373
0.019 1.2075 0.019 8.9315

Table I. The value of z;s.o for a* = 0.98 and for different values of 5 . The left column is for prograde motion
while the right column is for retrograde motion.

Co-rotating (a* = 0.3, ot = 0.5331) Counter-rotating (a* = 0.3, Eop = 0.5331)

5 Lisco 5 Lisco

0 4.9786 0 6.9493
0.40 4.3171 U025 6.7205
0.50 4.0861 0.50 6.4659

Table II. The value of xis., for a* = 0.3 and for different values of f . The left column is for prograde motion
while the right column is for retrograde motion.

One possible effect of ASG:
* more compact BH, event horizon, photosphere

» smaller innermost stab
that expected from ger

€C
elra

rcular orbit (isco) than
relativity (Sanchez 2024)

‘Irrespective of theoretical considerations, any
observational avenue to put constrains on deviations
from GR, should be explored.” [A. Eichhorn & A. Held,

2023]




The radius of the innermost stable circular orbit (isco) around a rotating black hole

What do we need to know?
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The radius of the innermost stable circular orbit (isco) around a rotating black hole

What do we need to know?

To calculate the theoretical risco: Fisco = T 347, — N cevAcEv 7
» Mass of the black hole (— gravitational radius); Z, =1+ V1 -a? \3/ 1 4+a+4/1- a_
* Spin (a); ' '

Z,=1\[3a*+ 7
To measure the observed risco:

+ Spectrum of the accretion disk (— temperature of the inner disk);
* Inclination of the accretion disk (/, viewing angle);
+ Distance from the Earth (d);

Best candidates: stellar-mass black holes

» the smaller, the better, because the ASG effects should be greater,
» accretion disk spectrum peaks in the soft X-rays (less problems than supermassive BH, peaking in UV);
* high statistics.




Spectrum of the accretion disk: multicolour black body (Mitsuda et al. 1984)

Kerr disk at d = 1 kpe, M= 1 M, Eddington limit
m = 0.9, 0.7, 0.5, 0.3 and 0.1

mg -l
g B The accretion disk is divided into rings, each one a black body with increasing
3 peak temperature with decreasing distance from the black hole.
°t Peak temperature — matter closest to the BH, but...
§ 0.01 | ”“0.1 ll 1 ll 10
Energy [keV] Ebisawa et al. (2003)

Fic. 2.—Kerr accretion disk spectra with an extreme angular momentum (a = 0.998), observed at the inclination angle 4 = cosi = 0.9 (green; near
face-on), 0.7 (yellow), 0.5 (cyan), 0.3 (red), and 0.1 (black; near edge-on). Note the units of the ordinate (keVZ s~! keV~! cm~2), which facilitate seeing the
energy release per logarithmic energy. Solid lines indicate the total disk spectra, and contributions from inner (1.26r, < r < 7r,;), middle (7r, < r < 400r,),
and outer parts (400r, < r) are plotted separately with either dotted or broken lines. The distance and mass are assumed to be 1 kpc and 1 M, respectively.
The Eddington luminosity is assumed, and T¢o1/ Terr = 1.
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States of stellar-mass black holes

JET LINE AREA:
w2 - 50% Lggq.

= High-frequency QPOs (after) .

= Type A & B QPOs (after).

= See radio ejecta (fast) each "crossing” of jet line.
* RMS drop ("The Zone™") associated with ~0.2 Hz
lowest freqency Lorentzian, close to ejecta time.

SOFT STATE:
= Optically nuclear thin jet
radio emission observed
initially, but quenched by
at least 20-50x by full |
transition. . )(
Detected radio z
flux not nuclear? t
=Type C QPOs. ‘
= Non-thermal ){
power law
extending to ~MeV.

= Thin disk ~0.1-1.0 Lgdd at
ISCO.

T. Belloni D. Maitra

A. Celotti S. Markoff

S. Corbel . McHardy

R. Fender M. Nowak

E. Gallo P.-O. Petrucci
M. Hanke K. Pottschmidt
E. Kalemci J.Wilms

X-ray Luminosity

HIMS:

# Disk starts near ISCO.

= Transition starts around 2 - 50% Lggyq.
= Type C QPOs.

= IR drops.

* Radio starts going optically thin l
"<

and variable (new ejecta?).

|l Hard l { || HARD STATE:
o e — = Disk moves in to ~few R, by
10% Lgdd.
| Jetline b = Lorentzian/broad noise
-I::m components.
? * High RMS variability.
. = Flat spectrum jet up to
Hard i IR/opt.

Intermediate

= Compact jet
, sometimes resolved.
. * Radio/IR/X-ray
correlations.

* Reflection "bump”.

Spectral Hardness
(spectral slope, soft=steep, hard=flat)

HIMS: QUIESCENCE:
Same as upper branch but: = Thin disk recessed to > 10°R,,.
= No optically thin radio flare. = BB component seen in UVIOpgtical.
= Radio recovers close to hard state. = Disk 10-100x more luminous than
= Lower flux level (hysteresis). LX. By ~1 04 Legq.

*No iron lines?

V m"'“‘""‘ Probing the Accretion/Outflow Connection in
. s X-Ray Binaries and Active Galactic Nuclei

http://www.issibern.ch/teams/proaccretion/

https://www.sternwarte.uni-erlangen.de/proaccretion/



Very High State

High State

Intermediate State

Low State

Quiescent State

Esin et al. (1997)
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States of stellar-mass black holes

0.5

0.09

0.08

0.01

JET LINE AREA: HIMS:

w2 - 50% Lggq. # Disk starts near ISCO.
= High-frequency QPOs (after) . = Transition starts around 2 - 50% Lggyq.
= Type A & B QPOs (after). = Type C QPOs.

= See radio ejecta (fast) each "crossing” of jet line. = IR drops.
* RMS drop ("The Zone") associated with ~0.2 Hz * Radio starts going optically thin l
"<

lowest freqency Lorentzian, close to ejecta time. and variable (new ejecta?).

SOFT STATE:
= Optically nuclear thin jet , Hard § HARD STATE:
ra.d.io emission observed : | |lntermedlate| = Disk moves in.to ~few R, by
initially, but quenched by ,§' . ' 10% Lggqg ?
= .
ot least 20-60x by full g IM = Lorentzian/broad noise
transition. . > — components.
Detected radio IS 2
- t o S [ * High RMS variability.
) ux not nuciear t - , = Flat spectrum jet up to
Type C QPOs. ;. Hard ] IR/opt.
= N:v':::‘f;v':‘a' )( = Intermediate = Compact jet
P > . sometimes resolved.

extending to ~MeV.

= Thin disk ~0.1-1.0 Lgdd at
ISCO.

. * Radio/IR/X-ray
correlations.
* Reflection "bump”.

Spectral Hardness
(spectral slope, soft=steep, hard=flat)

Foven D, QUIESCENCE:
S. Corbel  |. McHardy Same as upper branch but: = Thin disk recessed to > 102 R,

g' gea?lger g‘:gﬂ‘;":&‘ucci = No optically thin radio flare. = BB component seen in UV/Opgtical.
M. Hanke K. Pottschmidt = Radio recovers close to hard state. = Disk 10-100x more luminous than
E. Kalemci J. Wilms = Lower flux level (hysteresis). LX. By ~10™ Lggq.

*No iron lines?

V i wr ¢ Probing the Accretion/Outflow Connection in

anrere X-Ray Binaries and Active Galactic Nuclei

http://www.issibern.ch/teams/proaccretion/
https://www.sternwarte.uni-erlangen.de/proaccretion/
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High State
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0.01

JET LINE AREA:
w2 - 50% Lggq.

= High-frequency QPOs (after) .

= Type A & B QPOs (after).

= See radio ejecta (fast) each "crossing” of jet line.
* RMS drop ("The Zone™") associated with ~0.2 Hz
lowest freqency Lorentzian, close to ejecta time.

SOFT STATE:
= Optically nuclear thin jet
radio emission observed
initially, but quenched by
at least 20-50x by full |
transition. . )(
Detected radio z
flux not nuclear? t
=Type C QPOs. ‘
= Non-thermal ){
power law
extending to ~MeV.

= Thin disk ~0.1-1.0 Lgdd at
ISCO.

T. Belloni D. Maitra

A. Celotti S. Markoff

S. Corbel . McHardy

R. Fender M. Nowak

E. Gallo P.-O. Petrucci
M. Hanke K. Pottschmidt
E. Kalemci J.Wilms

X-ray Luminosity

HIMS:

# Disk starts near ISCO.

= Transition starts around 2 - 50% Lggyq.
= Type C QPOs.

= IR drops.

* Radio starts going optically thin l
"<

and variable (new ejecta?).

| Jet Iln; b

9

et 4 '
NTOTRIOCNS = Disk moves in to ~ few R, by

HARD STATE:
10% Lgdd.
= Lorentzian/broad noise
components.

* High RMS variability.
= Flat spectrum jet up to

Spectral Hardness

Hard
Intermediate

¥ IRlopt.

= Compact jet
, sometimes resolved.
. * Radio/IR/X-ray
correlations.

* Reflection "bump”.

(spectral slope, soft=steep, hard=flat)

HIMS:
Same as upper branch but:

= No optically thin radio flare.

= Radio recovers close to hard state.

= Lower flux level (hysteresis).

V m"'“‘""‘ Probing the Accretion/Outflow Connection in
. s X-Ray Binaries and Active Galactic Nuclei

QUIESCENCE:
= Thin disk recessed to > 10°R,,.
= BB component seen in UVIOpgtical.

» Disk 10-100x more luminous than
LX. By ~10™ Lggq.
“No iron lines?

http://www.issibern.ch/teams/proaccretion/
https://www.sternwarte.uni-erlangen.de/proaccretion/
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States of stellar-mass black holes

0.5
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JET LINE AREA: HIMS:

w2 - 50% Lggq. # Disk starts near ISCO.
= High-frequency QPOs (after) . = Transition starts around 2 - 50% Lggyq.
= Type A & B QPOs (after). = Type C QPOs.

= See radio ejecta (fast) each "crossing” of jet line. = IR drops.
* RMS drop ("The Zone") associated with ~0.2 Hz * Radio starts going optically thin l
"<

lowest freqency Lorentzian, close to ejecta time. and variable (new ejecta?).

SOFT STATE:
= Optically nuclear thin jet , Hard § HARD STATE:
ra.d.io emission observed : | |lntermedlate| = Disk moves in.to ~few R, by
initially, but quenched by ,§' . ' 10% Lggqg ?
= .
ot least 20-60x by full g IM = Lorentzian/broad noise
transition. . > — components.
Detected radio IS 2
- t o S [ * High RMS variability.
) ux not nuciear t - , = Flat spectrum jet up to
Type C QPOs. ;. Hard ] IR/opt.
= N:v':::‘f;v':‘a' )( = Intermediate = Compact jet
P > . sometimes resolved.

extending to ~MeV.

= Thin disk ~0.1-1.0 Lgdd at
ISCO.

. * Radio/IR/X-ray
correlations.
* Reflection "bump”.

Spectral Hardness
(spectral slope, soft=steep, hard=flat)

Foven D, QUIESCENCE:
S. Corbel  |. McHardy Same as upper branch but: = Thin disk recessed to > 102 R,

g' gea?lger g‘:gﬂ‘;":&‘ucci = No optically thin radio flare. = BB component seen in UV/Opgtical.
M. Hanke K. Pottschmidt = Radio recovers close to hard state. = Disk 10-100x more luminous than
E. Kalemci J. Wilms = Lower flux level (hysteresis). LX. By ~10™ Lggq.

*No iron lines?

V i wr ¢ Probing the Accretion/Outflow Connection in

anrere X-Ray Binaries and Active Galactic Nuclei

http://www.issibern.ch/teams/proaccretion/
https://www.sternwarte.uni-erlangen.de/proaccretion/
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VeryHigh State [ @ s : 26/03/1996 -
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R B e S S correlations.
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K 10-100x more luminous than
By ~10 Lggq.

Fig. 1. Transition from the hard spectrum on 26/3/1996 i-on lines?
to a soft spectrum on 30/5/1996, observed for Cygnus X-
1 (from M. Gilfanov, E. Churazov, M.G. Revnivtsev, in
preparation)

Esin et al. (1997)
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Issues in data collection

Searching in all the literature;

Reference quantities (BH mass, distance, inclination, spin) changed during years: once selected the best data set, there
IS need to make all data homogeneous before comparing them;

It's not easy:

» many authors did not publish all the necessary information (adopted distance and inclination were often missing);
* upper limits not recognized, missing measurement errors (for fluxes we assumed ~10%);

* Mmissing measurement units;

* plain errors, typos;

Nevertheless, it Is a better approach than download and reanalyse raw data, because It is possible to cover a longer time
interval, use information from different X-ray satellites, and identify immediately the soft states.



Instrumental biases

How reliable is the measurement of the inner disk temperature?

Strongly dependent on the low-energy threshold of the detector.

Example: RXTE/PCA, low-energy threshold 2 keV

10

lkeV-!

10

Photons

10-¢

0.1 1 10
Energy (keV)

Ny = 10* cm™2 T.. = 0.4keV



Instrumental biases

How reliable is the measurement of the inner disk temperature? Spectral extraction with high throughput

Strongly dependent on the low-energy threshold of the detector.

Example: Swift/XRT (and similar CCD detectors)
Example: RXTE/PCA, low-energy threshold 2 keV Pile-up (hole in the PSF)

[too high flux — failure to distinguish individual photons]

10~
|

103
|

Photons cm™? s keV~!

1076
|

0.1 1 10
Energy (keV)

1 _9 Out-of-time events, a.k.a. readout streak events
NH = 10" cm Tin = 0.4 keV Cyg X-1 [events hitting the detector during the readout]




Reference data from Miller-Jones et al. (2021)

M = 21T4%w-ﬁr

~2.3
_ 0.18
d=2.2275kpc
. _ Ao 1+40.77
i =27°.517,
a = 0.9696 — 0.9985
oo = (121 = 1.74)r,

Reference number:
(1) Dotani et al. (1997)
) Poutanen et al. (1997)
3-4) Cui et al. (1998)
5) Frontera et al. (2001)
6) Tomsick et al. (2014)
7) Sugimoto et al. (2016)
8-11) Walton et al. (2016)
12-13) Kushwaha et al. (2021)
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Reference data from Reid & Miller-Jones (2023),

Sreehari et al. (2020), Miller et al. (2013).

M=11.8x06My — r,=17.4%0.9km

d=94+x1.0kpc

i =64 4°
a=0.970—-0.997

= (1.28 — 1.74)r,

ISCO

Reference number:

(1-2) Taam et al. (1997)

(3) Muno et al. (1999)

(4-7) Feroci et al. (1999)
(8-10) Rao et al. (2000)

(11) Belloni et al. (2000)

(12) Zdiarski et al. (2001)
(13-22) Vadawale et al. (2001)
(23-27) Ueda et al. (2002)
(28-29) Naik et al. (2002)
(30-32) Done et al. (2004)

(

(37-46) Rodriguez et al. (2008)
(47-50) Vierdayanti et al. (2010)
(51-54) Ueda et al. (2010)
(55-60) Rahoui et al. (2010)
(61) Neilsen et al. (2011)

(62) Miller et al. (2016)

(63-68) Mineo et al. (2017)

(69) HESS Collaboration (2018)

)
3
33-36) Ohkawa et al. (2005)
)
)
)

GRS 1915+105

|

| |

20

40
Reference number

60




Reference data from Orosz et al. (2011), Steiner et al. (2011)

M =9.10%0.61 My — r, = 13.4 £ 0.9km

d = 43878 kpc

—0.41
1 =74°"] £ 3°.8
a=0.29 —-0.62
Fisco = (3.74 = 5.01)r,

Reference numbers:

(1) Sobczak et al. (1999)

(2-13) Sobczak et al. (2000)
(14-15) Rodriguez et al. (2003)

(16) Miller et al. (2003)

(17) Kubota & Done (2004)

(18-20) Kubota & Makishima (2004)
(21) Sriram et al. (2016)

(22) Connors et al. (2019)

(23-27) Connors et al. (2020)
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Reference data from Parker et al. (2016)

M=9.0"M, — ry

~1.2
d=28.4=x0.9kpc
1 =30"x1°

a~ 0.87—-0.97

~ (1.73 =2.51)r

Fisco g

Reference number:
(1-2) Miller et al. (2004A)
) Miller et al. (2004B)
4-5) Belloni et al. (2006)
) Reis et al. (2008)
) Miller et al. (2008)

8-10) Del Santo et al. (2008)
11-13) Motta et al. (2009)
14-18) Caballero-Garcia et al. (2009)
19) Shidatsu et al. (2011)

20) Motta et al. (2011)

21) Tamura et al. (2012)

22) Rahoui et al. (2012)

23) Plant et al. (2014)
24-25) Ludlam et al. (2015)
26) Kubota & Done. (2016)
27-29) Stiele & Kong (2017)
30-33) Sridhar et al. (2020)
34-36) Shui et al. (2021)
37) Liu et al. (2022)

38-40) Yang et al. (2023)
41) Peirano et al. (2023)
42) Liu et al. (2023)

43) Jana et al. (2024)
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XTE J1650-500

Reference data from Orosz et al. (2004), Homan et al. (2006), Slany & Stuchlik (2008)

M=40%06My—r,=59+09km

Only two cases found:
+ Miller etal. (2002): ry;, = 18 % 81,

+ Miniutti et al. (2004): r;, = 5.3 £ 1.7r,

d=2.6=x0.7kpc

=704 ..

e 09983 e
Fisco ™ 1'23rg l..

.0 51:0

!0.0 do.l

One Swift archival observation with exposure ~ 1 ks: no source detected.



GRO J0422+32: the smallest black hole?

Reference data from Casares et al. (2022), Gelino et al. (2003) -----
+0.7 +1.0

d =249 + 0.30 kpc

. Shraderetal. (1997): r;, = 5.1 & 2.3r, .----ll

Only one cases found

One Swift archival observation with exposure ~ 1.2 ks: no source detected.
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Final remarks

All the measured radii are consistent with the expectations of general relativity;

A few anomalous cases can easily be reconciled by taking into account the impact of Comptonization, a proper selection of the hardening factor, the
doubts on the reference quantities, and the instrumental biases;

What can we say about &?

+ This method is not suitable for negative values of &, because it implies an increase of 7 ... However, r:. ., can change when the object is in

different states, because of known physical processes. The extreme case of truncated inner disk occurs in hard state (7:
blown up of the corona and the onset of the jet.

» By considering the best case (Cygnus X-1, Tomsick et al. 2014), we can set a constraint on the positive values of &:

oo at tens of rg), with the

E = i 2 0.028 (30) by assuming a ~ 0.98 (arithmetic mean of the measured values).
g
» Work to do:

» improve the measurements of the reference quantities: the spin is the most critical one;
* |tis important to address the impact of Comptonization via either the hardening factor or a more detailed spectral modelling;

* Improve instrumental biases: modern detectors have lower energy thresholds, but are much more sensitive (difficult to cope with very high fluxes,
pile-up problems);



