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INTRODUCTION




The physics of black hole

interiors remains poorly
understood.

Modern General Relativity

has achieved the statusof a @

precision science.
Several other problems in
black hole physics
(information paradox).

The upcoming statistical

data on gravitational wave ®

events will enable precise
predictions in the strong

field regime. We still lack a well-established

theory of quantum gravity.




ASYMPTOTIC SAFE SCENARIO

New Physics / New Principles

Weinberg’s conjecture: a fundamental quantum
theory of gravity could perhaps be constructed

nonperturbatively by taking the continuum limit as a

nonGaussian fixed point (Weinberg (1979,1997)).

Possibility further developed by Reuter (Reuter
(1998)) within the functional renormalization
group approach (Wilson-type effective average
action I,)

Integrate out all fluctuation modes which have
momenta larger than a certain coarse-graining
momentum scale k.

The renormalized dynamics in encoded in I
whose dependence from the cutoff is
governed by:
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the exact functional renormalization group
equation (Reuter (1998), Bagnus & Bellivier
(2001), Morris (1998)).
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Extracting physical information:

* Truncate the theory space by projecting the renormalization group flow into a finite dimensional subspace where the coupling
constants are the coordinates (Reuter (1998), Reuter & Saueressig (2002)).

* Suppose that the relevant physical information in encoded in the running of coupling constants (Dittrich & Reuter (1985)).

interacting fixed point

critical surface
spanned by
relevant
couplings

infrarod value of couplings

perturbative
regime

Applying the same approach to gravity — effective quantum geometries
(classical solutions are replaced with effective geometries featuring a
running of coupling constants, Bonanno & Reuter (2000)).

Crucial problem: finding k in a
way that makes the approach
consistent.




Further investigations including the running of the cosmological
constant A have encountered various difficulties (Koch & Saueressig
(2014)).

This problem of deforming Schwarzschild solution including
quantum corrections consistently has only been partially addressed
in subsequent studies (Platania (2019)).

A 4

Brief summary of what we did:

We seek an approximate solution of the quantum-corrected
Schwarzschild - de Sitter metric in the ultraviolet and infrared
regimes by proposing a cutoff k that makes the solution consistent.

We interpolate the two approximate solutions by a numerical procedure
known as shooting such that we obtain the quantum correct metric
function in the entire domain




GENERALITIES

We truncate the theory space by considering Einstein-Hilbert action (leading contribution to quantum geometry):
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We introduce quantum corrections in the Schwarzschild-de Sitter solution promoting the bare constants
to running coupling constants
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* We are assuming the validity of the Einstein-Hilbert truncation at every momentum scale k (we expect that
near the nongaussian fixed point also higher curvature terms could play a role).

* The most general way to account for the running of coupling constants is to consider it at the level of
the action. A second possibility is to include them in the field equations. Including them in the solution is
the simplest way.

* We are assuming that the form of the metric always remains the same at every momentum scale k.

* We are implicitly assuming the existence of an effective description of quantum gravity effects in terms
of a smooth geometry.




GENERALITIES

Projecting the flow onto the subspace spanned by the Einstein-Hilbert truncation we obtain for the
dimensionless coupling constants g(k) = G, k?* and A(k) = A k>

(Koch & Saueressig, 2014)




GENERALITIES

Approximated analytic form of the Renormalization Group trajectories

(Koch & Saueressig, 2014)
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The observed (infrared) present value of A is quite small and can be set to zero whenever one is
considering black holes.



APPROXIMATE
SOLUTIONS




APPROXIMATE
SOLUTIONS

To get a well-defined spacetime geometry we need to exploit the dependence from the cutoff in the
dressed metric function.

k must respect the symmetries of the classical solution.

k must be invariant under coordinate transformations.

k(r) = 3 v We solve this
) = L(r) 1 differential equation in
dr L' = an approximate way.
L) = jds N fa(™) @ Vv a(r)

k(r) depends on the form of the dressed metric function which in turns depends-on the form of g(k) and A(k)
which is a backreaction between the dressed metric function and the cutoff (Until now completely neglected).




APPROXIMATE SOLUTIONS -
ULTRAVIOLET REGIME

Ultraviolet approximate solutions can be found from a series expansion (Frobenius method) )
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* The flow of G}, generates a curvature singularity «milder than the usual Schwarzschild one
(\/ R, ,cR"P? =1/ r3 )», while the flow of A generates a new (extensive origin).

* The functional form of the metric is rather similar to that derived by Mannheim and Kazanas in the
context of Weyl gravity (Mannheim & Kazanas (1998)).




APPROXIMATE SOLUTIONS - UV REGIME

We can try to remove the singularity coming from the linear term (w7") by translating the radial coordinate r - r + £:
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The form of the UV geometry depends crucially on the sign of
1 7 (6-6)°c* ,
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We avoid the conical singularity by cutting the spacetime to a finite geodesic length, therefore:

M <M, M > M,

* Agpr <0 AdS, X S? (appearance of an AdS, phase of + Ayp>0-dS, X §2
quantum gravity (widely used for addressing black hole
information paradox and microscopic origin of black hole
entropy, Cadoni et al (2023), Bonanno & Reuter (2007))

Phase transition at Planck scale geometrically as AdS, XS 2 > dS,xS? (first predicted by Polyakov (1993)) E




APPROXIMATE SOLUTIONS - IR REGIME

The same differential equation is solved in the infrared regime, i.e. where = > 1.
S
r
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* The general scaling of the 1/13 long range quantum corrections behave as ~ G5GM
implying for naturalness arguments that d ~ R (we cannot exclude a “superplanckian”

coming from an infrared term that in the effective average action goes to zero in the limit
k- 0




NUMERICAL SOLUTIONS




NUMERICAL SOLUTIONS

To determine the form of the metric function in the whole domain interpolating between the two
asymptotic solutions we employ a numerical method called shooting. By defining some adimensional

quantities:

r Gy, mg M* gl 1
=75 — — ) — *A*MR =/ */1*—; = i
D(p) = L(p) dD(p) _ 1 d = xR,/2 In the junction point we
R dp fa(p) ensure to have a continuous
and derivable function by

cancelling the wronskian
giving us x.




NUMERICAL SOLUTIONS
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FINAL REMARKS

The running of the coupling constants obtained by truncating the effective action to the Einstein-Hilbert action,
although including the ‘backreaction’ of the metric, does not eliminate the curvature singularity, makes the
Schwarzschild one milder and generates a conical singularity.

The non-linearity of the coupling constant flow equations gives rise to a phase transition from a regime with a
negative effective cosmological constant, linked to the Planck mass and corresponding to the vacuum energy
domain, to a regime with a positive cosmological constant in which matter excitations, controlled by the mass of
the black hole, dominate. This is correlated with a change in the topology of spacetime in the vicinity of the fixed
point, i.e. AdSZ XSZ - dSZ XSZ .

We shows the appearance of an AdS; phase of quantum gravity near the nonGaussian fixed point.

The effective quantum spacetimes we obtained from the running of the coupling constants show;, above a critical
mass value very close to the Planck mass, the formation of event horizons.







