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Modern General Relativity 
has achieved the status of  a 
precision science.

The upcoming statistical 
data on gravitational wave 
events will enable precise 
predictions in the strong 
field regime.

The physics of  black hole 
interiors remains poorly 
understood.

Several other problems in 
black hole physics 
(information paradox).

We still lack a well-established 
theory of  quantum gravity.
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ASYMPTOTIC SAFE SCENARIO
Weinberg’s conjecture: a fundamental quantum 
theory of  gravity could perhaps be constructed
nonperturbatively by taking the continuum limit as a 
nonGaussian fixed point (Weinberg (1979,1997)).

Possibility further developed by Reuter (Reuter 
(1998)) within the functional renormalization 
group approach (Wilson-type effective average 
action 𝚪𝒌)
• Integrate out all fluctuation modes which have 

momenta larger than a certain coarse-graining 
momentum scale 𝒌.

• The renormalized dynamics in encoded in 𝚪𝒌
whose dependence from the cutoff  is 
governed by:

𝒌𝝏𝒌𝚪𝒌 =
𝟏
𝟐
𝑺𝑻𝒓 𝚪𝒌

𝟐 +𝓡𝒌
$𝟏
𝒌𝝏𝒌𝓡𝒌 ,

the exact functional renormalization group 
equation (Reuter (1998), Bagnus & Bellivier
(2001), Morris (1998)).

(A. Platania, Quantum Gravity and All of  That, 2024)

(A. Platania, Quantum Gravity and All of  That, 2024)
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Asymptotic Safe Approach to quantizing the gravitational field:
• Gravity can be treated similarly to other quantum field theories whose 

continuum limits are defined non-perturbatively (aggiungi citazione
Weinberg, Reuter).

• We include quantum correction by integrating quantum fluctuations up to 
the coarse graining momentum scale 𝑘!.

• The basic tool is the Wilson-type effective average action Γ" (solution of the 
functional renormalization group equation).

• Γ" describes a renormalization group trajectory in the space of all actions 
connecting the classical action to the ordinary effective action.

• The accuracy of this effective field theory description depends on the 
magnitude of the fluctuations relative to the mean values (truncation of the 
theory space and suppose that the relevant physical information is encoded 
in the running of coupling constants.
• Idea borrowed from Quantum Electrodynamics ( 𝑒! → 𝑒 𝑘 !, 𝑘 → 1/𝑟

reproduces the Uehling potential, usually derived using standard 
perturbation theory)
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𝑉 = −
𝑒!

𝑟 𝑉" = −
𝑒"!

𝑟 𝑉# 𝑟 ∼ −
𝑒!𝑟$%#

4 𝜋 𝑟 1 + 𝑏 log
𝑟$
𝑟

Extracting physical information:
• Truncate the theory space by projecting the renormalization group flow into a finite dimensional subspace where the coupling

constants are the coordinates (Reuter (1998), Reuter & Saueressig (2002)).
• Suppose that the relevant physical information in encoded in the running of  coupling constants (Dittrich & Reuter (1985)).

Applying the same approach to gravity → effective quantum geometries 
(classical solutions are replaced with effective geometries featuring a 
running of  coupling constants, Bonanno & Reuter (2000)).

𝑓 𝑟 = 1 −
2𝐺#𝑀
𝑟

𝑓 𝑟 = 1 −
2𝐺"𝑀
𝑟

, 𝐺" =
𝐺#

1 + 𝐺#𝑔∗ 𝑘
!

Crucial problem: finding 𝒌 in a 
way that makes the approach 
consistent. 
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Non-perturbative aspects of Gravity: 
• Polyakov noted that because gravity is always attractive, a larger 

cloud of virtual particles implies a stronger gravitational force →
gravity should be antiscreened at small distance.

• 𝑔 𝑙 = % &
&!

→ lim
&→#

𝑔 𝑙 ∝ 𝑔∗ ≠ 0 (NON GAUSSIAN FIXED POINT)

• Conjecture by Polyakov (non-linear 𝜎-model) → rigorous calculation
(non-perturbative flow equation)

ℒ()) = ∑*+#, 𝑔* 𝑅*
is governed by a NON GAUSSIAN FIXED POINT (reached only by a 

non perturbative approach).
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• This problem of  deforming Schwarzschild solution including 
quantum corrections consistently has only been partially addressed 
in subsequent studies (Platania (2019)).

• Further investigations including the running of  the cosmological 
constant 𝚲 have encountered various difficulties (Koch & Saueressig 
(2014)).

• We seek an approximate solution of  the quantum-corrected 
Schwarzschild - de Sitter metric in the ultraviolet and infrared 
regimes by proposing a cutoff  𝒌 that makes the solution consistent.

• We interpolate the two approximate solutions by a numerical procedure 
known as shooting such that we obtain the quantum correct metric 
function in the entire domain

Brief  summary of  what we did:



We truncate the theory space by considering Einstein-Hilbert action (leading contribution to quantum geometry):

GENERALITIES
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𝚪𝒌 =
𝟏

𝟏𝟔 𝝅 𝑮𝒌
∫ 𝒅𝟒𝒙 −𝒈 [𝑹 − 𝟐𝚲𝒌]

We introduce quantum corrections in the Schwarzschild-de Sitter solution promoting the bare constants
to running coupling constants

𝒇 𝒓 = 𝟏 − 𝑹𝒔
𝒓
− 𝚲𝟎𝒓𝟐

𝟑
, 𝑹𝒔 = 𝟐 𝑮𝟎𝑴 𝑮𝟎 → 𝑮𝒌, 𝚲𝟎 → 𝚲𝒌 𝒇𝒅 = 𝟏 −

𝟐𝑮𝒌𝑴
𝒓

−
𝚲𝒌𝒓𝟐

𝟑

• We are assuming the validity of  the Einstein-Hilbert truncation at every momentum scale 𝒌 (we expect that 
near the nongaussian fixed point also higher curvature terms could play a role).

• The most general way to account for the running of  coupling constants is to consider it at the level of  
the action. A second possibility is to include them in the field equations. Including them in the solution is 
the simplest way.

• We are assuming that the form of  the metric always remains the same at every momentum scale 𝒌. 

• We are implicitly assuming the existence of  an effective description of  quantum gravity effects in terms 
of  a smooth geometry. 



We restrict ourselves at the Einstein-Hilbert truncation

Γ" =
1

16 𝜋 𝐺"
∫ 𝑑/𝑥 −𝑔 [𝑅 − 2 Λ"]

𝑔 𝑘 = 𝐺" 𝑘!, 𝜆 𝑘 = Λ" 𝑘0!

The validity of the EH truncation at every 
momentum scale 𝑘 is a quite strong 
assumption, particularly because we expect 
that near the non Gaussian fixed point also 
higher derivative terms could play a role. 

Nevertheless, the EH truncation \eqref{EHT} 
represents the leading term in the derivative 
expansion of Γ. and is therefore expected to 
give the leading  contribution to the quantum 
deformed black hole geometry.

GENERALITIESGENERALITIES
Starting from a static spherically-symmetric solution of the theory in the classical
limit

𝑑𝑠! = −𝑓 𝑟 𝑑𝑡! + 12!

) 2
+ 𝑟!𝑑Ω!,   𝑑Ω! = 𝑑𝜃! + sin! 𝜃 𝑑𝜙!.

𝑓 𝑟 = 1 − 3+
2
− 4,2!

5
, 𝑅6 = 2 𝐺# 𝑀

The quantum corrections come into play whenever
𝐺# → 𝐺" , Λ# → Λ",

Getting us with the dressed metric function

𝑓1 = 1 − !%-7
2

− 4-2!
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GENERALITIES
Projecting the flow onto the subspace spanned by the Einstein-Hilbert truncation we obtain for the 
dimensionless coupling constants 𝒈 𝒌 = 𝑮𝒌𝒌𝟐 and 𝝀 𝒌 = 𝚲𝒌𝒌0𝟐

• Gaussian fixed point located at the origin (infrared regime), 𝒈∗ = 𝟎, 𝝀∗ = 𝟎
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(Koch & Saueressig, 2014)

• NonGaussian fixed point located at 𝝀∗=0.193, 𝒈∗ = 𝟎. 𝟕𝟎𝟕 acting as an ultraviolet attractor (and 
giving the Ultraviolet completion of  the theory).



GENERALITIES
Approximated analytic form of  the Renormalization Group trajectories

𝒈 𝒌 =
𝑮𝟎𝒌𝟐

𝟏 + 𝑮𝟎𝒈∗ 𝒌
𝟐
, 𝝀 𝒌 =

𝒈∗𝝀∗

𝒈(𝒌) 𝟓 +
𝚲𝟎𝑮𝟎
𝒈∗𝝀∗ 𝟏 −

𝒈 𝒌
𝒈∗

𝟑
𝟐
− 𝟓 +

𝟑𝒈 𝒌
𝟐 𝒈∗ 𝟓 −

𝒈 𝒌
𝒈∗
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(Koch & Saueressig, 2014)

The observed (infrared) present value of  𝚲𝟎 is quite small and can be set to zero whenever one is 
considering black holes.



APPROXIMATE 
SOLUTIONS
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APPROXIMATE 
SOLUTIONS

To get a well-defined spacetime geometry we need to exploit the dependence from the cutoff  in the 
dressed metric function.

𝒌 must respect the symmetries of  the classical solution.

𝒌 must be invariant under coordinate transformations.

𝒌 𝒓 =
𝝃

𝓛(𝒓)

𝒌 𝒓 depends on the form of  the dressed metric function which in turns depends-on the form of  𝒈(𝒌) and 𝝀(𝒌)
which is a backreaction between the dressed metric function and the cutoff  (Until now completely neglected). 

𝓛: 𝒓 =
𝟏
𝒇𝒅(𝒓)
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We solve this 
differential equation in 
an approximate way.

𝓛 𝒓 = b𝒅𝒔 = b
𝒅𝒓
𝒇𝒅(𝒓)



APPROXIMATE 
SOLUTIONS

To get a well-defined spacetime geometry we need to exploit the dependence from the cutoff 
in the dressed metric function.

𝑘 must respect the symmetries of the classical solution.

𝑘 must be invariant under coordinate transformations.

𝑘 𝑟 = d
𝔗(f)

, 𝔗 𝑟 = ∫𝑑𝑠 = ∫ gf
h/(f)

𝑘 𝑟 depends on the form of the dressed metric function which in turns depends -trough the form of 
𝑔(𝑘) and 𝜆(𝑘)which is a backreaction between the dressed metric function and the cutoff. 

Until now the identification has been used neglecting completely the backreaction.

𝔗i f =
1
𝑓g(𝑟)

APPROXIMATE SOLUTIONS –
ULTRAVIOLET REGIME

Ultraviolet approximate solutions can be found from a series expansion (Frobenius method)

𝒌 𝒓 =
𝝃

𝓛(𝒓)
𝓛(𝒓): =

𝟏
𝒇𝒅(𝒓)

𝒌 𝒓 =
𝜷
𝒓𝟐 +

𝜸
𝒓 + 𝜹 + 𝓞(𝒓)

𝒇𝒅 𝒓 = 𝟏 𝝈 = 𝜷𝝀∗

𝚲𝒆𝒇𝒇 = 𝟗𝓜𝟐 𝟑 − 𝝈 𝟐𝟒 − 𝟓𝝈
𝝈𝟐 𝝈 − 𝟔 𝟐(𝟗 − 𝟐𝝈)

−
𝟕𝓜𝒑

𝟐

𝟐
𝟑 − 𝝈
𝟗 − 𝟐𝝈

𝓜 = 𝑴𝒈∗𝝀∗, 𝓜𝒑
𝟐 = 𝒎𝒑

𝟐 𝒈∗𝝀∗

𝝎 = 𝟒𝓜 𝝈0𝟑
𝝈(𝝈0𝟔)

, 𝓜=𝑴𝒈∗𝝀∗

−𝝎𝒓−
𝝈
𝟑

−𝚲𝒆𝒇𝒇𝒓𝟐 +𝓞(𝒓𝟑)

𝑅 ∼
𝜎
𝑟!

𝑅 ∼
𝜔
𝑟

• The flow of  𝑮𝒌 generates a curvature singularity (linear term) «milder than the usual Schwarzschild one 
𝑹𝝁𝝂𝝆𝝈𝑹𝝁𝝂𝝆𝝈 = 𝟏/𝒓𝟑 », while the flow of  𝚲 generates a new conical singularity term (extensive origin).
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• The functional form of  the metric is rather similar to that derived by Mannheim and Kazanas in the 

context of  Weyl gravity (Mannheim & Kazanas (1998)).



APPROXIMATE 
SOLUTIONS

To get a well-defined spacetime geometry we need to exploit the dependence from the cutoff 
in the dressed metric function.

𝑘 must respect the symmetries of the classical solution.

𝑘 must be invariant under coordinate transformations.

𝑘 𝑟 = d
𝔗(f)

, 𝔗 𝑟 = ∫𝑑𝑠 = ∫ gf
h/(f)

UV approximate solutions can be found from a series expansion (Frobenious method)

𝑘 𝑟 depends on the form of the dressed metric function which in turns depends -trough the form of 
𝑔(𝑘) and 𝜆(𝑘)which is a backreaction between the dressed metric function and the cutoff. 

Until now the identification has been used neglecting completely the backreaction.

𝑘 𝑟 =
𝜉

𝔗(𝑟)
𝔗: 2 =

1
𝑓1(𝑟)

𝑘 𝑟 =
𝛼
𝑟5 +

𝛽
𝑟! +

𝛾
𝑟 + 𝛿

𝑓 𝑟 = 1
𝜎 = 𝛽𝜆∗

1
𝐿!
= 9ℳ! 3 − 𝜎 24 − 5𝜎

𝜎! 𝜎 − 6 !(9 − 2𝜎)
−
7ℳI

!

2
3 − 𝜎
9 − 2𝜎

ℳ = 𝑀𝑔∗𝜆∗, ℳI
! = 𝑚I

! 𝑔∗𝜆∗

𝜔 =
4ℳ 𝜎 − 3
𝜎(𝜎 − 6)

−𝜔𝑟−
𝜎
3 −

𝑟!

𝐿!
+𝒪(𝑟5)

𝑅 ∼
𝜎
𝑟!

𝑅 ∼
𝜔
𝑟

𝑅 ∼
1
𝐿!

The flow of 𝐺 generates a curvature singularity milder than the 
usual Schwarzschild one 𝑅6/𝑟5 , while the flow of Λ generates a 
new conical singularity term. The conical singularity is determined
by a volume term and it might signalizes the breakdown of our
effective spacetime description in terms of a smooth geometry. 

𝔗i f =
1
𝑓g(𝑟)

APPROXIMATE SOLUTIONS –
UV REGIME

APPROXIMATE SOLUTIONS – UV REGIME
We can try to remove the singularity coming from the linear term (𝝎𝒓) by translating the radial coordinate 𝒓 → 𝒓 + ℓ:

𝒅𝒔𝒅𝟐 = −𝒇𝒅 𝒓 𝒅𝒕𝟐 + 𝒅𝒓𝟐

𝒇𝒅 𝒓
+ 𝒓 + ℓ 𝟐𝒅𝛀𝟐, 𝒇𝒅 𝒓 = 𝟏 − 𝓒 − 𝚲𝒆𝒇𝒇 𝒓𝟐

𝟑

ℓ = − 𝟑𝝎
𝟐𝚲𝒆𝒇𝒇

, 𝓒 = 𝝈
𝟑
− 𝟑𝝎𝟐

𝟒𝚲𝒆𝒇𝒇
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𝚲𝒆𝒇𝒇 = 𝟎 → 𝑴𝒕
𝟐 =

𝟏
𝒈∗𝝀∗

𝟕
𝟏𝟖

𝝈 − 𝟔 𝟐𝝈𝟐

𝟐𝟒 − 𝟓𝝈 𝒎𝒑
𝟐

𝑴 < 𝑴𝒕
• 𝚲𝒆𝒇𝒇 < 𝟎 → 𝑨𝒅𝑺𝟐×𝑺𝟐 (appearance of  an 𝑨𝒅𝑺𝟐 phase of  

quantum gravity (widely used for addressing black hole 
information paradox and microscopic origin of  black hole 
entropy, Cadoni et al (2023), Bonanno & Reuter (2007))

𝑴 > 𝑴𝒕
• 𝚲𝒆𝒇𝒇 > 𝟎 → 𝒅𝑺𝟐×𝑺𝟐

The form of  the UV geometry depends crucially on the sign of  𝚲𝒆𝒇𝒇:

We avoid the conical singularity by cutting the spacetime to a finite geodesic length, therefore:

Phase transition at Planck scale geometrically as 𝑨𝒅𝑺𝟐×𝑺𝟐 → 𝒅𝑺𝟐×𝑺𝟐 (first predicted by Polyakov (1993))



The scale dependence of the effective gravitational coupling in the IR 
%-
%,
= K

KL.,/∗ "
!
∼ 1 + %,

M∗
𝑘! and the existence of a continuum limit implies

the existence of a phase transition at𝑀N ∼ 𝒪(𝑚I) (Polyakov 
CITAZIONE).

The existence of an 𝐴𝑑𝑆!×𝑆! phase in quantum gravity have several
appealing features making it quite useful for addressing difficult
problems of black hole physics like the information puzzle and the 
microscopic origin of black hole entropy (CITAZIONI). 

The emergence of an 𝐴𝑑𝑆!×𝑆! phase near the NGFP could be related
to the existence of a phase with unbroken conformal symmetries, 
which is a general feature of both fixed points in the FRG approach and 
𝐴𝑑𝑆! quantum gravity (Mannheim citazione).

APPROXIMATE SOLUTIONS – IR REGIME
The same differential equation is solved in the infrared regime, i.e. where 𝒓

𝑹𝒔
≫ 𝟏. 

𝒇𝒅
(𝑰𝑹) = 𝟏 −

𝑹𝒔
𝒓 +𝓞

𝒍𝒏𝟐 𝒓
𝑹𝒔

𝒓𝟒
−
𝜻𝟒𝑮𝟎𝝀∗
𝟖𝒈∗𝒓𝟐

+
𝜻𝟐𝑮𝟎𝑹𝒔
𝒈∗𝒓𝟑

+
𝒅𝜻𝟒𝑮𝟎𝝀∗ + 𝑹𝒔𝜻𝟒𝑮𝟎𝝀∗𝒍𝒏

𝒓
𝑹𝒔

𝟐 𝒈∗𝒓𝟑
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• Long range infrared terms induced by quantum corrections.

• Long range gravitational contribution of  vacuum polarization of  conformal field theory 

degrees of  freedom (𝝆𝒗 = − 𝜻𝟒

𝟑𝟐 𝝅
𝝀∗
𝒈∗

𝟏
𝒓𝟒

, typical vacuum energy density expected for 

conformal fields in 4D)

• The general scaling of  the 𝟏/𝒓𝟑 long range quantum corrections behave as ∼ 𝑮𝟎𝟐𝑴
implying for naturalness arguments that 𝒅 ∼ 𝑹𝒔 (we cannot exclude a “superplanckian” 
coming from an infrared term that in the effective average action goes to zero in the limit
𝒌 → 𝟎)

• Other mass polarization effects 𝝆𝟏 =
𝜻𝟐

𝟒𝝅𝒈∗

𝑹𝒔
𝒓𝟓

𝝆𝟐 =
𝝀∗𝜻𝟒

𝟖 𝝅 𝒈∗

𝑹𝒔𝒍𝒏
𝒓
𝑹𝒔

𝒓𝟓
+ 𝒅

𝒓𝟓



NUMERICAL SOLUTIONS
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NUMERICAL SOLUTIONS

NUMERICAL SOLUTIONS
To determine the form of  the metric function in the whole domain interpolating between the two 
asymptotic solutions we employ a numerical method called shooting. By defining some adimensional
quantities:
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𝜌 =
𝑟
𝑅6
, 𝒢 =

𝐺#
𝑅6!

=
𝑚I
!

4 𝑀! , 𝜇 = 𝑔∗𝜆∗𝑀𝑅6 = 2𝑔∗𝜆∗
𝑀!

𝑚I
! , 𝜇 =

𝑔∗𝜆∗
2

1
𝒢

𝒟 𝜌 =
ℒ 𝜌
𝑅6

𝑑𝒟 𝜌
𝑑𝜌 =

1
𝑓1(𝜌)

In the junction point we
ensure to have a continuous
and derivable function by 
cancelling the wronskian
giving us 𝝌.

𝑑 = 𝜒𝑅6/2

UV regime

IR regime



NUMERICAL SOLUTIONS

NUMERICAL SOLUTIONS
We numerical integrate the solution of the proper length by using the shooting method and 
defining some adimensional quantities

𝒟 𝜌 =
ℒ 𝜌
𝑅6

,
𝑑𝒟 𝜌
𝑑𝜌 =

1
𝑓1 𝜌

𝑓1 𝑟 = 1 −
2 𝐺" 𝑀
𝜌 𝑅6

−
Λ"𝜌! 𝑅6!

3
𝑑 = 𝜒𝑅6/2

𝜌 =
𝑟
𝑅6

𝒢 =
𝐺#
𝑅6!

=
𝑚I
!

4 𝑀! ,

𝜇 = 𝑔∗𝜆∗𝑀𝑅6 = 2𝑔∗𝜆∗
𝑀!

𝑚I
!

𝜇 =
𝑔∗𝜆∗
2

1
𝒢

NUMERICAL SOLUTIONS

Anti de Sitter – de Sitter transition (lowering 𝓖 → «raising 
object’s mass» (naked singularity))

Formation of  horizons above critical mass 𝑴𝒄
𝟐 = 𝟏

𝟒𝓖𝒄
𝒎𝒑
𝟐
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FINAL REMARKS
The running of  the coupling constants obtained by truncating the effective action to the Einstein-Hilbert action, 
although including the ‘backreaction’ of  the metric, does not eliminate the curvature singularity, makes the 
Schwarzschild one milder and generates a conical singularity.

The non-linearity of  the coupling constant flow equations gives rise to a phase transition from a regime with a 
negative effective cosmological constant, linked to the Planck mass and corresponding to the vacuum energy 
domain, to a regime with a positive cosmological constant in which matter excitations, controlled by the mass of  
the black hole, dominate. This is correlated with a change in the topology of  spacetime in the vicinity of  the fixed 
point, i.e. 𝑨𝒅𝑺𝟐×𝑺𝟐 → 𝒅𝑺𝟐×𝑺𝟐.

We shows the appearance of  an 𝑨𝒅𝑺𝟐 phase of  quantum gravity near the nonGaussian fixed point.

The effective quantum spacetimes we obtained from the running of  the coupling constants show, above a critical 
mass value very close to the Planck mass, the formation of  event horizons.
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