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Motivations
- Big picture: the ones we see In nature are black holes or regular black holes?

1)First global study of the perturbed spacetime at the Cauchy horizon (CH); previous analyses in the
literature focus only on a portion of the phase space related to such peturbed system.

2)In general, why studying the Cauchy horizon instability? Can we cure it?

* a)lt seems that regular black holes imply the presence of the Cauchy horizon

) M %)

* b)ltis a crucial theoretical open problem and an open problem of internal

o




Cauchy horizon instability in a nutshell

- The Cauchy horizon is a surface of infinite blueshift

Event horizon d82 = —f(’l")dt2 -+ f(’r’)_ld’l“2 -+ ?°2dﬂ2
Cauchy horizon with f(r) =1—2M(r)/r = 0 having two different roots, rgy and rcg.
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Cauchy horizon instability in a nutshell

- The Cauchy horizon is a surface of infinite blueshift

Event horizon

Cauchy horizon

Eops.() = f(r) ™1 15" E\/EZ o f(T)]
For r — rcpg we have f(r) — 0.

) ; Since dt/ds = u® = f(r)"'E, and f(r) < 0 for rcy < r < TgH, and since
y : dt/ds > 0, then F < 0.
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The Ori model

VOLUME 67, NUMBER 7 PHYSICAL REVIEW LETTERS 12 AUGUST 1991

Inner Structure of a Charged Black Hole: An Exact Mass-Inflation Solution region 2

Amos Ori

Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125
(Received 4 March 1991)

Recently, Poisson and Israel have shown how when an electrically charged black hole is perturbed its
inner horizon becomes a singularity of infinite spacetime curvature—the mass-inflation singularity. In
this paper we construct an exact mass-inflation solution of the Einstein-Maxwell equations, and use it to
analyze the mass-inflation singularity. We find that this singularity is weak enough that its tidal gravita-
tional forces do not necessarily destroy physical objects which attempt to cross it. The possible continua-
tion of the spacetime through this weak singularity is discussed.

region 1
(U<0)

PACS numbers: 04.20.Jb, 97.60.Lf

DIt 1s an exact spherically symmetric mass-inflation solution of the Einstein(-Maxwell) equations.

[I)More “realistic” (1.e. physical) setting, if compared to the one where the perturbation is represented
by a single incoming photon.

[11) Incoming perturbation.

IV) portion of the originally incoming perturbation backscattered by the black hole’s
curvature near the Cauchy horizon (main novelty with respect to previous analyses in the literature at
that time).
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The Ori model

Total flux: balance given h o fluxes, one iIngoing and one outgolin
"Regular black holes with stable core”, V> ux: b o byt AL L SHS & d < tg &

both of positive energy, that cross each other.

A. Bonanno, F, Saueressig, A. Khosravi,
Phys. Rev. D 103, 124027 (2021)

VI)Total tlux: modelled as a pressureless speherical shell = composed by massless particles.

VII)The solutions is constructed matching two patches ot spacetime M (future
sector) and (past sector) through the null-like shell 2.

VIII)Advaced Eddington-Finkelstein coordinates {v, 7,8, @}, with v =t + r*:
ds? = —fy(r,vy)dvi + 2drdvy + r2dQ% where fy = 1 — 2M,(r,v4)/r

IX)Equation of motion for the shell X:

f_dv_ = 2dr
. . X)Enstein’s equations (Units: ¢ = 1, Gy = 1):
Juter potential barrier o 6M+ (T' 'U+) sl 8M+ (T‘ v+) St
T, =0, S S —4nr-T,, T —4nr<T,
XI)Continuity equation across 2: XII)Relation between v, and v_:
[TWS”SV] =) ——— [%% — ll M (rv )” f+dv, = fydv, along X
& s a — vy =0, (V)
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The Or1 model dynamical system

"Regular black holes with stable core”, . :
A. Bonanno, F, Saueressig, A. Khosravi, XIIT)Thanks to XII) we can express everything in terms of v = v_.
Phys. Rev. D 103, 124027 (2021)

XIV)Notation:

OM_ e :
F(v) = (f—l_a—l\i)L R(v) = shell position, y =dy/dv

1° Dynamical equation: R (U) — %f_ ‘ for R (v)
>

1 aM,
2° Dynamical equation: (— ) = (v) for TN 4 (V)
f+ ov /s
Outer potential barrier
my = my(v) = My(r,v) = fi(r,v) Boundary condition at the event horizon:
with mg unperturbed mass of the (regular) BH Price’s lawm_(v) = my — vﬁp with § > 0,and p = 11
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Reissner-Nordstrom solution: phase space for the Cauchy horizon
(In)stability and mass-inflation

- Free parameters: mg, 5, p - Assigning spacetime solution M (r) < f(r),
and initial conditions R(v;), m4 (v;) the system
and 1ts evoluton are fully determined

- Degrees of freedom: R(v), m, (v)

- Independent variable: v

2m 2 1
f(r)z(l— r0+ ) = ezz, p =11, mEa " r— = 0.06, ry = 3.93

Notation switch:
R(v) = Rn|[v]

my (v) = my[v]

dy/dv=y=y'
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Reissner-Nordstrom solution: phase space for the Cauchy horizon
(In)stability and mass-inflation

: . . . 1 .
- Analytical solution by Frobenius ansatz for R(v) around its attractor r_: R(v) = r_ + ;Z,O;O% with s >0, ag #0

|

equating powers of v shows » [£q. 2) explicitely reads
that a non-trivial solution requires

Ss=pandp > 2

|

we can determine recursively all
coefficients ay

for R.-N. left-hand side right-hand side analysis of
analysis of (sub)leading (sub)leading behaviour in v takes a bit
behaviour in v 1s simple more time

|
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Reissner-Nordstrom solution: phase space for the Cauchy horizon
(In)stability and mass-inflation

K = 1Y

2 O0r r_>0

m,(v) = C(e*Yv~2P) exponential divergence

: therefore “mass-inflation”
For v — oo the shell X impacts I

the Cauchy horizon r_ and M[R(v), my(v)] and K[R(v), m,(v)] will also

triggers the instabilit R
55 J show an exponential divergence

!

A curvature singularity builds up at the CH

”Surface gravity” at 7_:
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Reissner-Nordstrom solution: phase space for the Cauchy horizon
(In)stability and mass-inflation

Ehotesiabaty SR rits One repulsive fixed point and two clusters of initial conditions [R(v;), m, (v;)]:

Cluster I and Cluster II, both lead to (IR and UV) mass-inflation

Actually if numerical integration ot the tull Eqs. 1) and 2) 1s performed:
R(v; = 2) = 7/100 Dpole
m, (v = 2) = 21/10 P for v = vy, the curve has

inclination
M, (Vpore) depends

on [R(v;), m; (v;)] m, m, (V) reaches an accetable pole
M4 (Vpore) (accetable since R(v)
always reaches r_ before the instant

right—handz" ) - ) =0 3 :
e dn Upole; If Viceversa the dynamical

Rn[v]Z-2Rn[v] m description would just breakdowns)

!

Two clusters of initial conditions: Cluster |

Equation for the separatrix: “moving singularity” in this and Cluster II, both lead to (IR and UV) poles
My =My sor (G 0) fraction, reached when
T = e +R(v) >0 Relation between and 1s still under
) investigation. .. Py

(andd/orpoles?]

pole [7‘_, my (vpole)] is due to a




Simplifications, assumptions, observations and subtleties
Thanks to I. D1 Filippo for a useful WhatsApp discussion (mediated by L. Buoninfante) on some of these remarks

- NB: no Hawking evaporation in the energy flux balance, and no QFT on curved backgrounds in
general, 1s taken into account in this analysis. Here perturbations are fully classical.

Going to regular BHs:

- Or1 model assumes metric has the same functional form inside and outside the shell. Since regular
black holes are not sourced by vacuum GR, there 1s no Birkhoft theorem and this assumption

Decomes
>COIN

i ERIR B g o = 5 e = An St Sy o4 L gt e i A cae 2¢ i -
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e, - d .



Bardeen solution:

phase space tor the Cauchy horizon (in)stability . Tl

Reissner-Nordstrom

2
g ] phase space.

(r2 + a?)3/2

f-|s-

Photograh of the phase space vector field at v = v* = 1.3 Z.00m Photograh at v = v* = 1.5




Hayward solution:
phase space for the Cauchy horizon (in)stability

2 1
f(r):<1— At ) my=2, l=>, p=11, f=1 —— 7 =054 1. =393

~ (2-vPB)Rn[v]?
212 (2-vPRB) +Rn[v]?

s (RO my @) = (o o) = (0542) ' 20z

3
- Fixed point: (R(v), m, (v)) = (T_, — 27%) =~ (0.54,—0.31) -Itis — —=m <0

212 tattractor
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Hayward solution: m, (v) Frobenius solution around the attractor

1)Analytical solution by Frobenius ansatz for R(v) around its attractor r_: R(v) = r_ + %2;&0% with s >0, ag #0

ok
2)Plugging this ansatz in and equating powers of v shows that a non-trivial solution requires s = p and p > 2

l

3)We determine recursively coefficients a; up to k = 2 — analytical solution for R(v) at order k = 2:

1

4)Plugging this result into F (v), the right-hand side of Eq. 2), carrying on a careful
analysis of powers of v in the numerator and in the denominator shows:

1 6M+>

— == F(v) with EIE RIvi®m. [v]
f+ ov

))

1)Analytical solution by Frobenius ansatz for m, (v) around its attractor: m,(v) =my . —p k=0 "k

!

2)Plugging this ansatz in the left-hand side of Eq. 2), carrying on a caretul analysis of powers of v in the numerator
and in the denominator, and comparing with right-hand side of q. 2), we can determine byand recursively by, b, ...

1 16/30




Hayward solution: m, (v) Frobenius solution around the attractor

gL Arm In "Regular black holes with stable core”, A. Bonanno, I
dme” (&M =3 1) Saueressig, A. Khosravi, Phys. Rev. D 108, 124027 (2021)

1 32 r? my? they StOP at bO

4 m;f (3r_-4mg) ‘

1 4.2 32rimyd

r 3
. 3 p(l+p) - -I
‘ 4mg®  (4mg-3r. )7

Hayward solution: M [R(v), m,(v)] and K, |R(v), m;(v)] Frobenius solution around

the attractor
1)Keep enough subleading k in the solutions for R(v) and m (v) (the same order k for both otherwise you commit an

inconsistency!) to be sate

2)Replace the solutions in M[R(v), m,(v)] = M, (v) and carefully determine the leading term of the expression

1

Wrong expressions:
they use zero order

7_ and first
subleading by 17/30

Correct expressions:
leading term depends
on aq and by




Hayward solution: M, [R(v), m,(v)] and K, |R(v), m, (V)]

Frobenius solution around the attractor

m (1) =~ — = " bo 4 by - For v — oo there is no mass-inflation. Cluster II.A and I1.B
3 A Sl st - Divergence of the Misner-Sharp and Kretschmann is power-law and

not exponential.

M IR (v), m, = T Bl - L xponent is p + 1 with p from Price’s law.

- Parameter p appears also in the numerical pre-factor.

- Singularity at the CH builds wp but 1s quenched — could be integrable,
then geodesics completeness at the CH could be preserved.

4 1 [4mp®k.*
K.[R({v), m. (v)] = :

= Pl J
-9 1 pPia

More articulated

phase space
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Hayward: Frobenius solution "VS” numerical solution for Cluster II

Trajectory 1. A
Future sector mass energy-density R(v; =3) =2/3
M+ repuisor m+(vi = 3) = 1/2

Moy (V)

Shell position

m,, (V)

Trajectory Il.B
M attractor R(vi = 3) — 2/3
m,(v; =3) =—-3/2

| Log-Log plot of

. Kretschmann
the Misner-Sharp ,

—— Numerical solution M.[Rza(v), m.,, , (v)] ~ Numerical solution K,(Ry(V), m., , (V)
Numerical solution M.[Rz(v), M., (V)] o™ Numerical solution K,(Rys(v), .. o )]

V‘D*“ [ {3,’_—4,0?3:2 4 “ 1 3!’.-4!7?3']2 q

Exact Late-Time behaviour around the attractor Exact Late-Time behaviour around the attractor L(l {_VP* )6
P24 F § wef gy r?

. B

10

MM ) f AMJ

|
Al Al
V v VV v VUU - 9 Log (M, [Rp 4 (V). m1ey 4 W]} . dLog {M: [R2 g (V). may g (]} Extremel‘y gOOd

dv

T 12 r 12
Quantity which depends only on the Quantity which depends n the ag reement

- valueof p+1 - valueof p+1

0o

dv

o) ."Lwﬂ. |
lf




Model for asymptotically sate gravitational collapse

Oppenheimer-Snyder collapse in General Relativity: ~ Our model of collapse implementing the idea of an
gravitational collapse mm=gp Schwarzschild BH asymptotically safe gravitational interaction (by means of
a modified classical theory of gravity):

gravitational collapse mmgp A new regular BH

7

GR: vacuum
GR: star /

= GR: vacuum

Markov-Mukhanov Lagrangian
in the infrared (= GR): star

[, Aﬂ_‘ 9 & St

-



M = /&4star LJ/»4exterior

ds?,,. = —dt? + a(t)?dr? + a(t)2r2dQ?  {t,7,0,0} 0<r<m,

star

i C ﬁchy horizon

: - :
do — _, floslliimot/o®) o2 a(t) ~ e~ %, t— o0 Markov- / :
- \ :

: Mukhanov
I UV: star

ds? rerior = —f(R)AT? + f(R)"'dR? + R?dQ? {T,R,0, ¢}

pmy=1- 2 iog (14 %06) | R RyT) =realt) > 0

Markov—Mukhanov 2
.ﬂ - ’ . il -— - L] - v F -— -
Tl —* A a4 .




Solution from asymptotically safe gravitational collapse:
phase space for the Cauchy horizon (in)stability

We assume that perturbation arrives in this spacetime at t > tqy = instant in
which the CH forms

2

f(r)z[l—;—ELag(1+6€mo)] = L e e K

r3
—_— 1. =1.21, r, = 3.54

Penrose diagram courtesy
of D. Malafarina.

3 38 3( 38
= (R(), my (v)) = (r_, g—;(er% B 1)) =~ (1.21,2) -1tis Z—g(er% & 1) = > 0
3 3
- Fixed point: (R(), my (@) = (1, — &) = (1.21,-029)  -Itis — ==my . <0
'3 6 22/30




Spacetime from asymptotically sate gravitational collapse:
m_, (v) Frobenius solution around the attractor

1 ag
r3 — I)R(U) =71 +EZ;O=OU_I{

ap =3
r’+6&Emg-3r2mg 1

r* (rP+6&mp)

(rP+6&mg-3rimg)”

. Se e sl b : :
2)Frobenius ansatz m, (v) = — 2_5 + 52;?:0 v—i fails because the singular

point of the differential eq. 2) is inside a logarithm. Nevertheless attractor 1s
there. 1

3)With some intuition we can still obtain exact expression for Misner-Sharp attractor

a;=p83p

r’ (r3 + 6c§'m@)2

a; =Bp (1+p)
’ (r3+6c§m0—3r2m0)3

- For v — oo there is no mass-inflation.

- Divergence of the Misner-Sharp and Kretschmann is, respectively, logarithmic
and of power-law type, not exponential.

- Exponentis p + 1 with p from Price’s law.

- Singularity at the CH builds up but 1s quenched —— could be integrable, then
geodesics completeness at the CH could be preserved.

Cluster I1.A and I1.B

Coetlicient « i1s assumed to depend on p in a multiplicative way and is obtained by a best-fit of points from the
numerical solution once attractor regime 1s reached
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Solution from asymptotically sate (AS) gravitational collapse:

phase space for the Cauchy horizon (in)stability

Two fixed points, , three Clusters of initial conditions: Cluster I, Cluster II, Cluster 111

Atv=7v"=1.8

UV ma:_s:s‘:‘_ir_lﬂa.tion
(and/or peles?) _

-—
-
-
-~

“‘* — —— _ -
~ - ———— Tt - -
o — - - ~ - — [ —
T = e e S R ILAL
o -
A e P e aaesaaann) . Pen e
N —— ‘4_‘_4 ' -— g — — /
——— +—+;<_— / :‘_‘—,‘—4— -
= L _ ' —~ -~ ~Cluster 4.B
r — - _— L
. r — -
_ e e gy
_‘44"__ s DL
/“4 IR mass@_ﬁaﬂ.on
i < -
(and/or.petes?) s
s

A different phase space structure
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AS: Frobenius solution ”VS” numerical solution for Cluster 11

Shell position IL.A

Shell position II.B

- valueof p+1

V v W) \ —— Complete numerical solution for v -

Quantity which depends only on the

150

—— Complete Numerical Trajectory for M[Rz a(v), m.za(v)]
Complete Numerical Trajectory for M[Rz g(v), m.za(v)]

o

e )] with a=p

L3
Exact Analytical Expression for the Attractor: 'G'—E%Log[(

1
50 100 150 200 250 300

Future sector mass
energy-density

300

T Afit

L3 1
—— Exact Analytical Expression for the Attractor: 6‘—{ %Log[( ﬁ)zl with| a=ag; =(0.032107531260733485)p

[ . wl)
dLog {My [Ry 4 (W), may 4 (4]}

dv

12

Quantity which deper
- valueof p+1

“M,Jﬂw

' Best-Fit line giving

Trajectory I1. A
R(v;=3)=5/4

m,(v; =3)=1/7

- m+rapulsor

MyzalV)
B '"**":”;’ Trajectory I1.B
R(v; = 3) = 5/4

e
&“’ﬁ"
o’i

&

6‘&

Numerical [solution for
exp[-Misn r—Sharp:l

T ST T W B ' 1

12
1ds only on the

180

~— Complete numerical solution for v -

100 150 200 250 300

dLog (M [Ry g (). m, g W)]}

dv

Extremely good
agreement




The three universality classes and their possible ending states

- Bardeen regular BH has the same phase space of the Reissner-Nordstrom BH.

- We also have studied the Bonanno-Reuter regular BH: it has the same phase space of the Hayward regular BH.

|

What determines the phase space structure is the functional form of left-hand side of eq. 2) (with respect tom,.)

Linear in m,: Quadratic in m,: Logarithmic in m:
Solutions | Reissner-Nordstrom, Hayward, Solution from AS
| Bardeen ; - Bonanno-Reuter P grawtatpnal »
L -y . N . S Aa e A ".....”' B ' & Sl ’1-'.-"?' 1) S _:f".” ' i 2




On the astrophysical viability of regular black hole solutions

A simple argument to show that from the study of the Cauchy horizon (in)stability

maybe we could learn something about the degree of astrophysical viability of regular
black hole solutions:

1)We can fix R(v;) = (r_+r,)/2 without loss of generality.

l

2)In order to talk about perturbations, it should be Im+ (o)l

my
N VLO 0 b *2 Py A 5 - : : S fyp-s - e

< 1, otherwise we are dealing with a competitor astrophysical

OD]E 10 i-l
5 HIUL

o

1 e N A £ b= g 2k
et =il CULNPEtILL St Ty A S N e T s b s o )i — A can T ole b o8 :
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On the astrophysical viability of regular black hole solutions

[f we buy this argument:

(Regular) BHs belonging to Linear Class:
Reissner-Nordstrom, Bardeen

|

unphysical

Regular BHs belonging to Quadratic Class:
Hayward, Bonanno-Reuter

unphysical
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On the astrophysical viability of regular black hole solutions

[f we buy this argument:

Regular BH belonging to Logarithmic Class:
solution from asymptotically safe gravitational
collaps

phase space of CH (in)stability
suggests astrophysical viability
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Conclusions and outlooks

REN I
- Global study of the phase space related to the CH instability of (regular) BHs

- Three universality classes for the possible phase spaces

- For certain universality classes, for certain clusters of initial conditions mass-inflation instability 1s
avolded 1n favour of quenched divergences

Conclusion

s
.= — .







