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• a)It seems that regular black holes imply the presence of  the Cauchy horizon

• b)It is a crucial theoretical open problem and an open problem of  internal ’’consistency’’

• c)It is related to the destinity of  the  cosmic censorship conjecture

• d)It is related to geodesic completeness in a (regular) black hole spacetime

• e)It can tell us something about the astrophysical viability of  (regular) black holes

Motivations
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2)In general, why studying the Cauchy horizon instability? Can we cure it?

Interrelated problems

- Big picture: the ones we see in nature are black holes or regular black holes? 

1)First global study of  the perturbed spacetime at the Cauchy horizon (CH); previous analyses in the
literature focus only on a portion of  the phase space related to such peturbed system.



Cauchy horizon instability in a nutshell

- The Cauchy horizon is a surface of  infinite blueshift
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Cauchy horizon instability in a nutshell

- The Cauchy horizon is a surface of  infinite blueshift
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A free falling radial observer
approaching the Cauchy horizon
will measure an infinite blueshift
for a radially incoming photon.

The system composed by (regular) black hole + incoming photon
faces an ultraviolet catastrophe.

Cauchy horizon

Collapsing
star

Event horizon

!

Incoming photon

Free falling observer
Then, at the meeting point:
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The Ori model

I)It is an exact spherically symmetric mass-inflation solution of  the Einstein(-Maxwell) equations.

II)More ’’realistic’’ (i.e. physical) setting, if compared to the one where the perturbation is represented
by a single incoming photon.

III)1° incoming flux: incoming perturbation.

IV)2° outgoing flux: portion of  the originally incoming perturbation backscattered by the black hole’s
curvature near the Cauchy horizon (main novelty with respect to previous analyses in the literature at
that time). 
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Inner Structure of a Charged Black Hole: An Exact Mass-Inflation Solution

Amos Ori
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(Received 4 March 1991)
Recently, Poisson and Israel have shown how when an electrically charged black hole is perturbed its

inner horizon becomes a singularity of infinite spacetime curvature —the mass infla-tion singularity In.
this paper we construct an exact mass-inflation solution of the Einstein-Maxwell equations, and use it to
analyze the mass-inflation singularity. We find that this singularity is weak enough that its tidal gravita-
tional forces do not necessarily destroy physical objects which attempt to cross it. The possible continua-
tion of the spacetime through this weak singularity is discussed.

PACS numbers: 04.20.Jb, 97.60.Lf

The issue of the final state of gravitational collapse is a
long-standing, open question in general relativity (GR).
It is widely accepted today that everything falling into a
black hole, including the collapsing matter that formed
the black hole, will eventually crash into a strong space-
like singularity of almost zero volume, in which spacetime
ceases to be classical and quantum gravity dominates the
physics. Nevertheless, there is an alternative possibility
of gravitational bounce: Infalling objects may avoid the
singularity and emerge out of a "white hole" into another
asymptotically flat universe [I]. The Reissner-Nordstrom
(RN) geometry, which is the unique solution of the
Einstein-Maxwell equations for static, spherically sym-
metric, electrically charged black holes, is an archetype
for this scenario. In the extended RN geometry, the cen-
tral singularity is timelike and all free-falling (electrically
neutral) objects avoid it, and eventually are ejected into
another external universe. Test particles in the extended
Kerr geometry show a similar behavior (however, we
shall restrict our attention here to RN-based models).
When a strictly spherical charged object collapses, it
leaves behind it a RN exterior. If the object is made of
charged dust, we can solve analytically for the interior
geometry as well [2]. For some range of initial condi-
tions, the interior dust evolves in a completely regular
manner, producing a "tunnel" to another universe [3].
The main objection to this idea is that the internal

parts of both the RN and Kerr geometries are unstable.
That is, the energy-momentum associated with various
massless test fields diverges at a certain null hypersurface
inside the black hole, called the Cauchy horizon (CH) or
the inner horizon [4]. This instability is crucial to the
question discussed here, because in the RN geometry any
object that falls into the black hole must cross the CH.
It is widely believed that if one were to consider, self-
consistently, the back reaction of the field's diverging
energy-momentum on the geometry, the regular CH
would become a curvature singularity. One would like to
know the features of this singularity. In particular, is it
sufticiently strong and violent to be regarded as a physical
boundary of classical spacetime?
Recently, Poisson and Israel (PI) invented a simple

model to explore the possible back-reaction eAect of the
diverging perturbations on the CH [5,6]. To simplify the
analysis, they modeled the infinitely blueshifted radiation
by an ingoing spherically symmetric stream of massless
particles. With such an ingoing stream, the RN
geometry is converted into the charged Vaidya solution
(CVS) [7]. In this solution, the CH is in fact a curvature
singularity. However, as was shown by PI, this singulari-
ty seems to be rather weak. This is expressed by the fact
that for a suitable choice of the coordinates the metric
functions approach a regular limit on the CH, and det(g)
remains nonzero [6]. In addition, none of the scalars con-
structed by contraction of the Riemann tensor or its prod-
ucts is divergent there.
However, PI have shown that this situation is drastical-

ly changed if one considers, in addition, beneath the
hole's event horizon, a flux of outgoing massless particles.
Such particles model a piece of the ingoing field that has
been backscattered by the hole's curvature and thereby
has become outgoing. (Such backscattering will always
be present. ) We do not know the explicit solution for the
case of two cross flows. Nevertheless, PI showed that the
mass function m (a generalization of the Schwarzschild
mass and the Vaidya mass function to generic spherical
geometries; see Ref. [6]) blows up at the CH. As this
divergence is exponential with retarded time (which is
infinite at the CH), PI call this phenomenon mass
inflation This divergen. ce of m guarantees that the scalar
R"'~ R„„,~~ is infinite at the CH, and therefore that the
mass-inflation singularity is somewhat stronger than the
CH singularity of the original CVS.
The most important physical consequences of the

singularity are tied to the question of whether it is strong
enough to destroy objects which hit it. The formalism
developed by PI does not answer this question, as it does
not give explicit expressions for the metric functions. It is
the main goal of this paper to construct an exact mass-
inflation solution and to use it to analyze the structure
and strength of the mass-inflation singularity.
As was shown by PI, the structure of the mass-inflation

singularity is virtually independent of the details of the
outgoing flux. We shall therefore consider an extremely
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dg 2 = —2e 2~dUdV+r (2)
Here V is an ingoing radial null coordinate (namely, in-
going photons move on V=const orbits), and U is the
outgoing radial null coordinate. We choose the coordi-
nate V to coincide with X along S. The coordinate U is as
yet unspecified, except that it increases with time and
we set U=O at S. We define the function R(k) to be the
value of r along S, namely, R(k)=r(V=X, U=O). We
shall now show how this function determines the geom-
etry on both sides (up to an integration constant).
From Eq. (1) it is clear that along any line U=const

we have

dr/dv = ,' f= —,
' (1+e /r )——m/r .

In particular, we obtain for U=0
R'/v'= —,

' (1+e /R )—m/R,

(3)

(4)

short pulse of outgoing Aux, beyond which the geometry
is described by another CVS. Such a short pulse can be
modeled, mathematically, as a null layer of energy with
vanishing thickness. We shall construct an exact mass-
inflation solution by matching two patches of CVS
through such an outgoing null "thin layer" (see Fig. 1).
Then, using this explicit solution, we shall show that the
mass-inAation singularity is, in fact, so weak a singularity
that extended objects hitting it are not necessarily des-
troyed. Hence, if the mass-inflation singularity is a gen-
eric feature of gravitational collapse, as suggested by PI,
the intriguing possibility of objects crossing the Cauchy
horizon is not ruled out by the instability of the CH.
The charged Vaidya solution is given by the line ele-

ment

ds = —f(r, v)dv +2drdv+r dA

where f= 1 —2m—(v)/r+e /r, the constant e is the black
hole s electric charge, and v is an ingoing null coordinate.
The arbitrary mass function m(v) determines the flux of
ingoing radiation, which is proportional to dm/dv.
Let us now consider the matching of two patches of

CVS (denoted region 1 and region 2 in Fig. 1) along an
outgoing thin null layer S. We shall use the subindex 1

(2) for quantities defined in patch 1 (2) (unindexed
quantities will refer to both patches). We require that
the metric tensor be continuous at 5; hence, the coordi-
nate r is continuous. Since the null Auid is assumed to be
electrically neutral and pressureless, the thin layer 5
which models it has a vanishing electric charge and a
vanishing surface tension (i.e., vanishing nonradial com-
ponents of surface stress-energy). This implies that (i)
the constant e is the same in both regions 1 and 2, and
(ii) the affine parameter X along S is the same on its two
sides [8]. We shall take X to increase with time, and set
k =0 at the CH.
Since the overall geometry cannot be described by the

CVS, we shall also use double null coordinates:

FIG. 1. Penrose diagram of the spacetime formed by the
matching of two CVS patches along the thin layer S.

where the prime denotes a derivative with respect to k.
In addition, the geodesic equation for v" reads for U=0

v"=v'(e'/R' m/R'—) . (s)

From Eqs. (4) and (6), we obtain the three matching
equations in an explicit form:

m(X) =(R/2)(1+e'/R )—zR', (7)

v(X) = (R/z)dX, (8)

z(X) =Z+ —,
' (1—e /R )dl. (9)

Here Z is an integration constant. We omitted the in-
tegration constant in Eq. (8) because adding a constant
to v does not make any physical difference. Equations
(7)-(9) completely determine the CVS on both sides of
S, once R(X) and the integration constants Z~ and Zq are
given. The (k-dependent) mass of the thin layer, Am(k)—:mz(k) —m~(A, ), is obtained directly from Eqs. (7) and
(9):

~m(x) =(z, —z2)R'(x) . (lo)
In order to apply this formalism to the problem of in-

terest, we must determine the relevant function R(X) and
the two integration constants Z~ and Zq. R(X) and Z~
are to be determined from the well-known features of the
CVS in region 1, which is, in fact, a slightly perturbed
RN solution. In particular, the CH (k =0), which corre-
sponds to v~ ~, is located at r =ro, where ro—=mo—(mo —e ) ', and mo is the final mass of the black hole
after it has absorbed all the ingoing radiation. It is con-
venient to express the mass function in region 1 as
m~(v~) =mo —Bm(vi), where Bm(v~) represents the
mass contribution associated with the radiative tail which

Combining Eqs. (4) and (5) yields a closed equation for
z(X)—=R/v':

z'= —, (I —e'/R') .
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XI)Continuity equation across Σ:
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The Ori model
V)Total flux: balance given by the two fluxes, one ingoing and one outgoing,

both of  positive energy, that cross each other.

VI)Total flux: modelled as a pressureless speherical shell Σ composed by massless particles.

VII)The solutions is constructed matching two patches of  spacetime ℳ7 (future
sector) and ℳ8 (past sector) through the null–like shell Σ. 

VIII)Advaced Eddington-Finkelstein coordinates 9, :, ;, < , with 9 = = + :∗:
@%A = −C± :, 9± @9±A + 2@:@9± + :A@ΩA where C± = 1 − 2H±(:, 9± )/:

IX)Equation of  motion for the shell Σ:
C8@98 = 2@:

X)Enstein’s equations (Units: J = 1, KL = 1):

"00 = 0,       
-.±(0,2±)

-0
= −4N:A"22,      

-.±(0,2±)
-2

= −4N:A"20

’’Regular black holes with stable core’’, 
A. Bonanno, F, Saueressig, A. Khosravi, 
Phys. Rev. D 103, 124027 (2021)

XII)Relation between 97 and 98:
C7@97 = C7@97 along Σ

97 = 97(98)

2

FIG. 1. The Ori model of the interior of a regular black
hole. The r = 0 hypersurface is not singular in these models.
Radiation enters the black hole backscattered from the outer
potential barrier as ingoing null rays. Outgoing radiation is
schematically represented by a thin shell ⌃ which crosses the
Cauchy horizon. The “corner” H is a singular point of the
conformal diagram. At variance with the classical Ori model,
no singularity develops in the future sector of the shell.

center so that a de Sitter core eventually develops [11, 24]
and M(r) ⇠ r3 for small r. An explicit model realizing
such a phase transition is the Hayward model [13] where

M(r) =
mr3

r3 + 2ml2
. (2)

Here l is a free parameter whose value should be fixed
by the underlying quantum gravity model. Other sug-
gestions for regular black hole geometries include the
Bardeen black holes [9, 25], the asymptotically safe black
holes [26, 27], Planck stars [28–30], and the loop black
hole described in [31], also see [17] for additional refer-
ences and discussion.

The occurrence of a de Sitter core induces a non-trivial
topology change in the black hole geometry. In variance
with the Schwarzschild case, the horizon condition f(r) =
0 now has two solutions: beside the event horizon (EH)
located at r+ there is also an inner, Cauchy horizon (CH)
at a smaller radius r� < r+. For the Hayward model (2)
these are given by the two positive roots of

2l2m� 2mr2 + r3 = 0 . (3)

As a consequence of the modified horizon structure, the
spacetime is no longer globally hyperbolic. We define the
surface gravity ± at the horizons by

± ⌘ ± 1

2

@f(r)

@r

����
r=r±

, (4)

where the sign ensures ± > 0. The event horizon emits
Hawking radiation with temperature TEH = +/(2⇡).
Owing to the resulting energy loss, the coordinate dis-
tance between the event and Cauchy horizon decreases.
A complete evaporation is attained in an infinite time,
as measured by an stationary observer at asymptotic in-
finity. The final, asymptotic configuration is a regular,
extremal black hole with vanishing surface gravity. The
mass mcr of the remnant follows form the condition that
the position of r± coincide. For the Hayward model,
mcr =

3
p
3

4 l.
A classical analysis reveals that the Cauchy horizon is

generally unstable to external perturbations [21]. For this
reason there have been doubts about the consistency of
regular black hole models [32]. The physical picture un-
derlying the analysis is as follows: the collapse of a mass
distribution to form a black hole will lead to the emis-
sion of a stream of gravitational waves when the black
hole settles into its final “hairless” state. A part of this
wave tail will be reflected by the gravitational potential
at r > r+, creating an ingoing flux of positive energy
crossing the event horizon. In the vicinity of the Cauchy
horizon a part of this flux will again be back-scattered
by the gravitational potential in the black hole interior,
creating an outgoing positive energy flux. A consistent
calculation which takes into account the combined effect
of the ingoing radation from the collapsing star and the
backscattered gravitational radiation near the CH shows
that a genuine scalar singularity develops at the Cauchy
horizon [33]. This situation is illustrated in Fig. 1.

Technically, it is convenient to formulate this analy-
sis in terms of the coordinates (v, r) where time is pa-
rameterized by the ingoing Eddington-Finkelstein coor-
dinate v, defined by the condition that radially ingoing
light rays follow curves with v = const. One then intro-
duces a time-dependent perturbation in the mass func-
tion M(r) ! M(r, v) describing a shell of outgoing light-
like dust on the interior geometry of the black hole. The
corresponding energy flux is encoded in the Isaacson ef-
fective energy-momentum tensor [34] and its decay fol-
lows Price’s law [35, 36]. The behavior of the curvature
invariants near the Cauchy horizon is rather insensitive
to the details of the local fields trapped inside the event
horizon. The rate of divergence of the Coulomb compo-
nent of the Weyl curvature2 [37],  2 ⌘ Cµ⌫⇢�lµm⌫m̄⇢n�,
can then be characterized by the anomalous dimension

of the instability

⌫ =

d ln | 2|
d ln v

. (5)

In the limit v ! 1,  2 ' c1 v�p
e

� v with c1 being a
v-independent constant, entailing that the anomalous di-

2 Here Cµ⌫⇢� denotes the Weyl tensor and {lµ, nµ,mµ, m̄µ} is a
complex null-tetraed with lµnµ = �1, mµm̄µ = 1.  2 is the
only non-zero scalar for a Petrov type-D spacetime.
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The Ori model dynamical system
’’Regular black holes with stable core’’, 
A. Bonanno, F, Saueressig, A. Khosravi, 
Phys. Rev. D 103, 124027 (2021) 2

FIG. 1. The Ori model of the interior of a regular black
hole. The r = 0 hypersurface is not singular in these models.
Radiation enters the black hole backscattered from the outer
potential barrier as ingoing null rays. Outgoing radiation is
schematically represented by a thin shell ⌃ which crosses the
Cauchy horizon. The “corner” H is a singular point of the
conformal diagram. At variance with the classical Ori model,
no singularity develops in the future sector of the shell.

center so that a de Sitter core eventually develops [11, 24]
and M(r) ⇠ r3 for small r. An explicit model realizing
such a phase transition is the Hayward model [13] where

M(r) =
mr3

r3 + 2ml2
. (2)

Here l is a free parameter whose value should be fixed
by the underlying quantum gravity model. Other sug-
gestions for regular black hole geometries include the
Bardeen black holes [9, 25], the asymptotically safe black
holes [26, 27], Planck stars [28–30], and the loop black
hole described in [31], also see [17] for additional refer-
ences and discussion.

The occurrence of a de Sitter core induces a non-trivial
topology change in the black hole geometry. In variance
with the Schwarzschild case, the horizon condition f(r) =
0 now has two solutions: beside the event horizon (EH)
located at r+ there is also an inner, Cauchy horizon (CH)
at a smaller radius r� < r+. For the Hayward model (2)
these are given by the two positive roots of

2l2m� 2mr2 + r3 = 0 . (3)

As a consequence of the modified horizon structure, the
spacetime is no longer globally hyperbolic. We define the
surface gravity ± at the horizons by

± ⌘ ± 1

2

@f(r)

@r

����
r=r±

, (4)

where the sign ensures ± > 0. The event horizon emits
Hawking radiation with temperature TEH = +/(2⇡).
Owing to the resulting energy loss, the coordinate dis-
tance between the event and Cauchy horizon decreases.
A complete evaporation is attained in an infinite time,
as measured by an stationary observer at asymptotic in-
finity. The final, asymptotic configuration is a regular,
extremal black hole with vanishing surface gravity. The
mass mcr of the remnant follows form the condition that
the position of r± coincide. For the Hayward model,
mcr =

3
p
3

4 l.
A classical analysis reveals that the Cauchy horizon is

generally unstable to external perturbations [21]. For this
reason there have been doubts about the consistency of
regular black hole models [32]. The physical picture un-
derlying the analysis is as follows: the collapse of a mass
distribution to form a black hole will lead to the emis-
sion of a stream of gravitational waves when the black
hole settles into its final “hairless” state. A part of this
wave tail will be reflected by the gravitational potential
at r > r+, creating an ingoing flux of positive energy
crossing the event horizon. In the vicinity of the Cauchy
horizon a part of this flux will again be back-scattered
by the gravitational potential in the black hole interior,
creating an outgoing positive energy flux. A consistent
calculation which takes into account the combined effect
of the ingoing radation from the collapsing star and the
backscattered gravitational radiation near the CH shows
that a genuine scalar singularity develops at the Cauchy
horizon [33]. This situation is illustrated in Fig. 1.

Technically, it is convenient to formulate this analy-
sis in terms of the coordinates (v, r) where time is pa-
rameterized by the ingoing Eddington-Finkelstein coor-
dinate v, defined by the condition that radially ingoing
light rays follow curves with v = const. One then intro-
duces a time-dependent perturbation in the mass func-
tion M(r) ! M(r, v) describing a shell of outgoing light-
like dust on the interior geometry of the black hole. The
corresponding energy flux is encoded in the Isaacson ef-
fective energy-momentum tensor [34] and its decay fol-
lows Price’s law [35, 36]. The behavior of the curvature
invariants near the Cauchy horizon is rather insensitive
to the details of the local fields trapped inside the event
horizon. The rate of divergence of the Coulomb compo-
nent of the Weyl curvature2 [37],  2 ⌘ Cµ⌫⇢�lµm⌫m̄⇢n�,
can then be characterized by the anomalous dimension

of the instability

⌫ =

d ln | 2|
d ln v

. (5)

In the limit v ! 1,  2 ' c1 v�p
e

� v with c1 being a
v-independent constant, entailing that the anomalous di-

2 Here Cµ⌫⇢� denotes the Weyl tensor and {lµ, nµ,mµ, m̄µ} is a
complex null-tetraed with lµnµ = �1, mµm̄µ = 1.  2 is the
only non-zero scalar for a Petrov type-D spacetime.

XIV)Notation:

!(#) ≡ &'
()

*+)
*, -

,    . # ≡ /ℎ122 34/56547,    9̇ ≡ :9/:#

XIII)Thanks to XII) we can express everything in terms of  # ≡ #<.

1° Dynamical equation:  .̇ # = &'
>
?<

-
for .(#)

2° Dynamical equation:  &'
(@

*+@
*, -

= ! # for AB(#){
AD ↦ A±(#) → H±(I, #) → ?± I, #
with AD unperturbed mass of  the (regular) BH

Boundary condition at the event horizon:

Price’s lawA< # = AD −
L
,M

with N > 0, and 3 ≥ 11



Reissner-Nordstrom solution: phase space for the Cauchy horizon
(in)stability and mass-inflation
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- Degrees of  freedom: ! " , $% "

- Free parameters: $&, ', (

- Independent variable: "

- Assigning spacetime solution ) * ↔ , * ,
and initial conditions ! "- , $% "- the system
and its evoluton are fully determined

, * = 1 − 2$&
* + 3

4

*4 $& = 2, 3 = 1
2 , ( = 11, ' = 1 *5 ≅ 0.06, *% ≅ 3.93

1)

2)

! " ≡ != "
$%(") ≡ $%["]

BC/B" ≡ Ċ ≡ C′

*5 *%
Notation switch:



Reissner-Nordstrom solution: phase space for the Cauchy horizon
(in)stability and mass-inflation
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- Fixed point: ! " , $% " = '(, )
*%+,*
-+,

≅ 0.06, 2

Photograh of  the phase space vector field at " = "∗ = 1.2 Zoom Photograh at " = "∗ = 1.5

'( '%! axis

$ %
ax
is

$ %
>
0

$ %
<
0

Energy perturbation growing UV

Energy perturbation growing IR

- It is )*%+,*
-+,

≡ $%9:;<=>?9 > 0

Shell Σ approaching the CH



Reissner-Nordstrom solution: phase space for the Cauchy horizon
(in)stability and mass-inflation
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- Analytical solution by Frobenius ansatz for !(#) around its attractor %&: ! # = %& + )
*+ ∑-./

0 12
*2 with   3 > 0,  6/ ≠ 0

Eq. 2) explicitely readsEq. 1) equating powers of  # shows 
that a non-trivial solution requires
3 = 8 and 8 > 2

for R.-N. left-hand side 
analysis of  (sub)leading
behaviour in # is simple

right-hand side analysis of  
(sub)leading behaviour in # takes a bit 
more time

we can determine recursively all
coefficients 6-

2 2

2 2



Reissner-Nordstrom solution: phase space for the Cauchy horizon
(in)stability and mass-inflation
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’’Surface gravity’’ at !":

#" ≡ %− '
(
)*(,)
), ,.

> 0

12(3) ≃ 5(67.83"(9) exponential divergence
therefore ’’mass-inflation’’

:[< 3 ,12(3)] and ?[< 3 ,12(3)] will also
show an exponential divergence

For 3 → ∞ the shell Σ impacts 
the Cauchy horizon !" and 
triggers the instability

A curvature singularity builds up at the CH

2

2



Reissner-Nordstrom solution: phase space for the Cauchy horizon
(in)stability and mass-inflation?
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Photograh at ! = !∗ = 1.5

'((!) reaches an accetable pole 
'((!+,-.) (accetable since /(!)
always reaches 01 before the instant
!+,-. ; if viceversa the dynamical
description would just breakdowns)

Actually if numerical integration of  the full Eqs. 1) and 2) is performed:

Cluster I

Cluster II

Equation for the separatrix: 
'( = '(23456782(> 0)

separatrix

One repulsive fixed point and two clusters of  initial conditions [/ !< ,'( !< ]:
Cluster I and Cluster II, both lead to (IR and UV) mass-inflation

Two clusters of  initial conditions: Cluster I 
and Cluster II, both lead to (IR and UV) poles?

Relation between (*) and (**) is still under 
investigation…

/ !< = 2 = 7/100
'( !< = 2 = 21/10

local

pole

'((!+,-.) depends
on [/ !< ,'( !< ]

(*)

(**)
pole 01,'( !+,-. is due to a 
’’moving singularity’’ in this
fraction,  reached when 

'1 ! = .B(C(D)B
EC(D) > 0

2

2) right-hand
side:

for ! = !+,-.the curve has
∞ inclination

global

UV mass-
inflation
(and/or 
poles?):

IR mass-inflation
(and/or poles?):



Simplifications, assumptions, observations and subtleties
Thanks to F. Di Filippo for a useful WhatsApp discussion (mediated by L. Buoninfante) on some of  these remarks
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- NB: no Hawking evaporation in the energy flux balance, and no QFT on curved backgrounds in 
general, is taken into account in this analysis. Here perturbations are fully classical.

- Ori model assumes metric has the same functional form inside and outside the shell. Since regular 
black holes are not sourced by vacuum GR, there is no Birkhoff theorem and this assumption
becomes non-trivial.

- Ori model eqs. are obtained assuming a pressureless dust shell, and in GR this choice can always be 
done since there is a clear distinction between gravity and matter. Since regular black holes are 
sourced by an !"#$%%, becomes non-trivial to justify that this choice is allowed.  

- Cosmological coupling could affect, on the long time, what in the following is called ‘’attractor’’ for 
the perturbed regular black hole, bringing the perturbed regular black hole out of  the attractor. 

Going to regular BHs:



Bardeen solution:
phase space for the Cauchy horizon (in)stability
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! " = 1 − 2'(")
(") + ,))./)

'( = 2, , = 1
2 , 1 = 11, 2 = 1

quantum charge

Photograh of  the phase space vector field at 3 = 3∗ = 1.3 Zoom Photograh at 3 = 3∗ = 1.5

separatrix

Cluster I

Cluster II

Exact photocopy of  
Reissner-Nordstrom
phase space. 

Repulsive fixed point: 

8 9 , :; 9 = <=, >?;<@?
A/?

?<@?

UV mass-
inflation
(and/or 
poles?):

IR mass-
inflation
(and/or 
poles?)



Hayward solution:
phase space for the Cauchy horizon (in)stability
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! " = 1 −
2'(")

"* + 2'(,)
'( = 2, , =

1
2
, . = 11, / = 1

- Fixed point: 0 1 , '2 1 = "3, −
456

)78
≅ 0.54, −0.31

- It is 456

)(458378)
≡ '2BCDEFGHB > 0

- Fixed point: 0 1 , '2 1 = "3,
456

)(458378)
≅ 0.54, 2

- It is − 456

)78
≡ '2JKKBJLKHB< 0

"3 ≅ 0.54, "2 ≅ 3.93

1)

2)



Hayward solution: !"($) Frobenius solution around the attractor
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1)Analytical solution by Frobenius ansatz for &($) around its attractor '(: & $ = '( +
+

,-
∑/01
2 34

,4
with   5 > 0,  81 ≠ 0

2)Plugging this ansatz in Eq. 1) and equating powers of  $ shows that a non-trivial solution requires 5 = : and : > 2

3)We determine recursively coefficients 8/ up to < = 2 analytical solution for &($) at order < = 2: 

1)Analytical solution by Frobenius ansatz for !"($) around its attractor: !" $ = !"=>>?=@>A?
+

+

,B
∑/01
2 C4

,4

4)Plugging this result into D($), the right-hand side of  Eq. 2), carrying on a careful
analysis of  powers of  $ in the numerator and in the denominator shows:

2)Plugging this ansatz in the left-hand side of  Eq. 2), carrying on a careful analysis of  powers of $ in the numerator 
and in the denominator, and comparing with right-hand side of Eq. 2), we can determine E1and recursively E+, EG, …

I
1

K"

LM"

L$
N

= D $ with
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Hayward solution: !"($) Frobenius solution around the attractor

Hayward solution: &"[( $ ,!"($)] and +" ( $ ,!" $ Frobenius solution around
the attractor

In ’’Regular black holes with stable core’’, A. Bonanno, F, 
Saueressig, A. Khosravi, Phys. Rev. D 103, 124027 (2021) 
they stop at ,-

1)Keep enough subleading . in the solutions for (($) and !"($) (the same order . for both otherwise you commit an 
inconsistency!) to be safe

2)Replace the solutions in & ( $ ,!" $ ↦ &"($) and carefully determine the leading term of  the expression

Correct expressions: 
leading term depends
on 01 and ,1

Wrong expressions:
they use zero order
23 and first 
subleading ,-
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Hayward solution: !"[$ % ,'"(%)] and +" $ % ,'" %
Frobenius solution around the attractor

'" % ≃ − ./0
223 +

56
%7 +

58
%7"8

- For % → ∞ there is no mass-inflation.
- Divergence of  the Misner-Sharp and Kretschmann is power-law and 

not exponential.
- Exponent is ; + 1 with ; from Price’s law.
- Parameter ; appears also in the numerical pre-factor.
- Singularity at the CH builds up but is quenched could be integrable, 

then geodesics completeness at the CH could be preserved.

Hayward solution: phase space for the Cauchy horizon (in)stability

Cluster I

Cluster II.B

Cluster II.A

Repulsor

Attractor

UV mass-inflation
(and/or poles?)

More articulated
phase space

Cluster II.A and II.B

At = = =∗ = @. B CDDE At = = =∗ = @. FG



Hayward: Frobenius solution ’’VS’’ numerical solution for Cluster II 
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Shell position
Future sector mass energy-density

Log-Log plot of  
the Misner-Sharp

Kretschmann

Quantity which depends only on the 
value of  ! + #

Quantity which depends only on the 
value of  ! + #

Extremely good
agreement

$ %& = 3 = 2/3

$ %& = 3 = 2/3

+, %& = 3 = 1/2

+, %& = 3 = −3/2

/012345607 88. :

/012345607 88. ;



Model for asymptotically safe gravitational collapse
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Oppenheimer-Snyder collapse in General Relativity:
gravitational collapse Schwarzschild BH

Our model of  collapse implementing the idea of  an 
asymptotically safe gravitational interaction (by means of  
a modified classical theory of  gravity):
gravitational collapse A new regular BH

! = 0

GR: vacuum
GR: star

Event horizon

Event horizon

! = 0

≅ GR: vacuum

Markov-Mukhanov Lagrangian
in the infrared (≅ GR): star 

Ending state: Schwarzschild BH

Event horizon

Then the process enters in the semiclassical regime, after an energy
density threshold is reached:
- running of  the Newtonian coupling becomes significant
- gravitational potential turns repulsive (N.B. but the star keeps
contracting)
- an hypothesis of  the singularity theorem is violated

%&

%'&

%(&

Singularity
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!" = ∞

Markov-
Mukhanov
UV: star

Event horizon

Cauchy horizon

M.-M. 
UV: 
star

Event horizon

Cauchy horizon

Ending state is that there is no ending state:
an ongoing ‘’eternal collapse’’ in the core

?Which effective theory (i.e.
a classical modified theory of  
gravity that implements the 
leading quantum correction to 
vacuum GR) for the strong-
gravity vacuum (i.e. outside the 
collapsing star)?

!%"

!&"Interior (‘’star’’) 
spacetime

Markov-Mukhanov
Lagrangian ?

Exterior spacetime
Matching
conditions at the 
star’s surface

?

?

'( ≤ ' < +∞



Solution from asymptotically safe gravitational collapse:
phase space for the Cauchy horizon (in)stability
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We assume that perturbation arrives in this spacetime at ! > !#$ ≡ instant in 
which the CH forms

Penrose diagram courtesy
of  D. Malafarina.

& ' = 1 −
'+

3-
./0 1 +

6-34

'5
34 = 2, - = 1, 8 = 11, 9 = 1

': ≅ 1.21, '= ≅ 3.54

- Fixed point: @ A , 3= A = ':, −
BCD

EF
≅ 1.21, −0.29

- It is BCD

EF
I
DJ
KCL − 1 ≡ 3=KMNOPQRK > 0- Fixed point: @ A , 3= A = ':,

BCD

EF
I
DJ
KCL − 1 ≅ 1.21, 2

- It is − BCD

EF
≡ 3=STTKSUTRK< 0

1)

2)



Spacetime from asymptotically safe gravitational collapse:
!"($) Frobenius solution around the attractor
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1)& $ = () + +
,- ∑/01

2 34
,4

2)Frobenius ansatz !" $ = − 678
9: +

+
,- ∑/01

2 ;4
,4 fails because the singular

point of  the differential eq. 2) is inside a logarithm. Nevertheless attractor is
there.

3)With some intuition we can still obtain exact expression for Misner-Sharp attractor

- For $ → ∞ there is no mass-inflation.
- Divergence of  the Misner-Sharp and Kretschmann is, respectively, logarithmic

and of  power-law type, not exponential.
- Exponent is > + 1 with > from Price’s law.
- Singularity at the CH builds up but is quenched could be integrable, then

geodesics completeness at the CH could be preserved.
> @ = A

Cluster II.A and II.B
Coefficient A is assumed to depend on > in a multiplicative way and is obtained by a best-fit of  points from the 
numerical solution once attractor regime is reached



Solution from asymptotically safe (AS) gravitational collapse:
phase space for the Cauchy horizon (in)stability
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At ! = !∗ = $. & Zoom At ! = !∗ = $. '

Two fixed points, two separatrices, three Clusters of  initial conditions: Cluster I, Cluster II, Cluster III

Cluster I

Cluster III

Cluster II.A
Cluster II.B

A different phase space structure

UV mass-inflation
(and/or poles?)

IR mass-inflation
(and/or poles?)



AS: Frobenius solution ’’VS’’ numerical solution for Cluster II 
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Shell position II.A

Future sector mass 
energy-density

Misner-Sharp

Quantity which depends only on the 
value of  ! + #

Quantity which depends only on the 
value of  ! + # Extremely good

agreement

$ %& = 3 = 5/4

$ %& = 3 = 5/4

,- %& = 3 = 1/7

,- %& = 3 = −1/2

234567893: ;;. =

234567893: ;;. >

Shell position II.B

Best-Fit line giving
?@AB

Attr
ac

to
r reg

im
e

Numerical solution for

exp[-Misner-Sharp]



The three universality classes and their possible ending states
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Linear in !": Quadratic in !":

- Bardeen regular BH has the same phase space of  the Reissner-Nordstrom BH.

- We also have studied the Bonanno-Reuter regular BH: it has the same phase space of the Hayward regular BH.

What determines the phase space structure is the functional form of  left-hand side of  eq. 2) (with respect to #")

Solutions Reissner-Nordstrom,
Bardeen

Cluster I:
UV mass-inflation

Cluster II:
IR mass-inflation

Hayward,
Bonanno-Reuter

Cluster I:
UV mass-inflation

Cluster II:
Misner-Sharp and
Kretschmann scalar
are power-law divergent

Logarithmic in !":

Solution from AS
gravitational
collapse

Cluster I:
UV mass-inflation

Cluster II:
Misner-Sharp is logarithmically
divergent
Kretschmann scalar is power-law
divergent

Cluster III:
IR mass-inflation

Clusters
of  initial
conditions
and their
related
ending
states



On the astrophysical viability of  regular black hole solutions
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A simple argument to show that from the study of  the Cauchy horizon (in)stability
maybe we could learn something about the degree of  astrophysical viability of  regular 
black hole solutions:

1)We can fix !(#$) ≈ ('(+'))/2 without loss of  generality.

2)In order to talk about perturbations, it should be  |-.(/0)|
-1

< 1, otherwise we are dealing with a competitor astrophysical

object, not with a perturbation. 

3)Notice that 4)566758697 is always one order of  magnitude smaller than the mass of  the  black hole 4:.

5)From this study, a-posteriori, we learn that the only phase space showing a compact cluster (bounded both from above
and from below) of  initial conditions is the one of  the solution from asymptotically safe gravitational collapse.

4)From 2) we have that a phisically motivated initial condition for the perturbation has to belong to a close and limited
interval. We can take 4)566758697 as center of  this interval, without making an ad hoc choice because of  3):
4)(#$) ∈ [4)566758697 − >4), 4)566758697 + >4)]



On the astrophysical viability of  regular black hole solutions
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If we buy this argument:

(Regular) BHs belonging to Linear Class: 
Reissner-Nordstrom, Bardeen

unphysical

Regular BHs belonging to Quadratic Class:
Hayward, Bonanno-Reuter

unphysical



On the astrophysical viability of  regular black hole solutions
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If we buy this argument:

Regular BH belonging to Logarithmic Class:
solution from asymptotically safe gravitational
collaps

phase space of  CH (in)stability
suggests astrophysical viability



Conclusions and outlooks
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- Quenched divergences could allow for geodesic completeness at the CH. Then
perturbed regular black holes could preserve the absence of  strong curvature 
singularities (and actually remain regular) 

- Including into the balance the ingoing Hawing flux bringing negative energy

Results

Possible flaws

Possible outlooks

- Global study of  the phase space related to the CH instability of  (regular) BHs

- Possible geodesic completeness at the CH calls for proposals for the type of  physics beyond the CH itself

- Three universality classes for the possible phase spaces

- For certain universality classes, for certain clusters of  initial conditions mass-inflation instability is
avoided in favour of  quenched divergences

- Application of  Ori model to regular BHs could imply non-trivial assumptions

Conclusion



Thank you for your attention!


