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Cosmological Inflation - Some open questions
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1Credit image: Planck 2018 results. X. Constraints on inflation. arXiv:1807.06211

e Where do these
models come from?
Can we build one
from fundamental
physics?

* Can we predict the
initial conditions of
the inflaton field?

J

Using Asymptotic
Safety, we can!
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Asymptotic Safety

“R+2A
= Idax‘f 1671Gk)
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FRGE: Christof Wetterich. arXiv:1710.05815

Wetterich RG flow Equation

&_1 . kdl;l((k) :
dk 2 (gt + R(K))

@ Ansatz Wilsonian effective action:
=3V, 8o 0<k<oo

@ Get beta functions of the couplings:

agn /811

® Search for UV-fixed point:
/6|* = 0 ) g* * 0
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Predictive Power of Asymptotically Safe QFTs

Theory space

UV-Fixed point with
finite amount of
attractive directions

U

Finite amount of free
parameters

Finite amount of
measurements needed

J
Predictive

power!
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What can we do with Asymptotically Safe QFTs?

We can make predictions coming from the UV-fixed point!

['(k = 00) = UV fixed point action

J
I'(k = 0) = Full effective action

— Study the phenomenology of the emergent I'(k = 0)
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4D Scalar-Tensor EFT: RG Flow

(@ Scalar-Tensor Model: Unknown f (k, ¢*) and v(k, ¢?) (6% = Gre?)

_ 4 -R 2)‘k f(kﬂ(f)z) U(k,¢2)
r(k) = f T8 T6nGr T [6nGr)? ~ 167G N (167Gy)?

1
+ E({')y@auéﬁ)

Y
@ RG flow of f and v given by Non-linear PDEs of second order

U
@ Shift-symmetric (¢ — ¢ +c), UV-fixed point

487 691272
li -2
Am G Ak = {7 g

b Jim f(k ¢?) = Tim o(k, %) = 0
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4D Scalar-Tensor EFT: RG Flow

Scalar-Tensor Model: Unknown f (k, ¢?) and v(k, ¢?) (¢? = Grp?)

2)\k _f(kvéz)R_i_ U(k,(/)z)

-R 1
T(k :fd4 Ly o
() VBUgrG, t WonGrE ~ 167G, Nt enGrE T2 ke )

U
@ The RG flow has 4 degrees of freedom, but 2 are fixed by observations!

- B _ _ 0? . 0%v
Go~6.71 x107¥GeV 2, g~ 10712, m{) = a_<;£|¢=°”‘=° mg = a_¢2|¢:°”‘=°

Only 2 free parameters: m’:), mg
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4D Scalar-Tensor EFT: Numerical Solutions

mj) = 0.42 mg =2.75 x 1071
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Emergence of Inflation from the UV

By means of a conformal transformation (g — gr), one goes to the Einstein frame

. Veg(k,¢(0))  Ouodtc
f dx\/_(_l67er (167G~ 2G; )

Where the effective potential turns out to be

2\ +0(k, ¢*(9))
(1+f(k,¢*(0)))

with the UV and IR limits

Vegr(k, ¢(0)) =

. (o
limy oo Vi (k, (0)) =27 | limyg Ve (k, 6(0)) = Fop o
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Emergence of Inflation from the UV

The inflaton potential emerged from Quantum Gravity!

Veff(0,¢)x101°

Slow-Roll Inflation

¢ =1.55
¢r =0.25
ns ~0.965
r ~0.005
N,f ~66
A, ~2.06 %1077
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Emergence of Inflation from the UV

Veff(k,¢)

Universe starts near 1
UV-fixed point with
arbitrary initial value of 0.001

¢ (shift-symmetry) &

” e ————
Adiabatical evolution T~
gives initial condition g T

of inflaton!

10—12 -

0.05 0.10 050 1 5 10
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Take home messages

We studied the Renormalization Group
Flow of scalar-tensor theories and found
a UV-Fixed point (Asymptotic Safety).

J
We connected the UV with the IR by
solving the RG flow equations and
obtained non trivial emergent potentials.

U

The emergent potentials could give rise
to an inflationary period fitting current
observations.

|
Following RG flow from the UV to the IR
we explained initial conditions inflaton.

® Thank you for your attention ®
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Appendix 0: RG Flow Equations

We studied these kind of scalar tensor theories

D) =[x BF @R+ V(K ) + 50,00"%)

Non-linear, second order RG flow equations 2

3FOD (k, 0)? + F(k, ©)
" 3202 (BEOD (k, )2 + F(k, ) (VOD (K, o) + 1))

kVED (k@) = oV (k. 0) - 4V (k. 0) + 1

37
38472
. F(k,) ((3FV (k, )* + F(k,p)) (=3F "2 (k, p) + 3V (k, ) + 1) + 2F (k, ) V"2 (k, 0)?)

KFCO (k, ) = oF D (k, ) = 2F (k, 0) + 75

96m2 (3FC:1 (k)2 + F(k, ) (VO (k, ) + 1))’

2Flow Equations: Roberto Percacci, Gian Paolo Vacca. arXiv:1501.00888
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Appendix 1: Conformal Transformation

The conformal 9o, 1 3 (f/ (k, ¢2))2

transformation to go (6_) a k. 2 + 1 k. 42))2
from the Jordan frame to ¢ (1+ft ) (+f k%)

the Einstein frame is
gﬁu = (1 +f(k7 ¢2))gﬂl’
| 5

For slow-roll inflation
this gives the relations
atk=0 3t

¢; =155 -0, ~1.8
¢ =0.25 - 07 ~ 0.26
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Appendix 1: Conformal Transformation

Veff(0,0)

8.x10710

6.x10710

4.x10710

2.x10710

Veff(0,0)

1.5x10710

1.x10710

5.x107""1

.................................

One can of course,
compute the potential as
a function of the new
field o. The overall
shape is similar to the
shape as a function of ¢.

o; ~1.8
oy ~0.26
15 ~0.965
r ~0.005
N, ~66
A 22.06 %107
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Appendix 2: Slow-roll observables

00, 1

, 3 (k%))

(557 -

(T+f(k.D)

(L+f(k,¢?))?

Einstein Frame

Jordan Frame

L1 gD 1 Valo)
872 V(o) 87" V(o)
ng=1-6e+2n r=16¢

1 Veﬁ‘ o do

As= oapze Ne =87 /a, N

(®)
-2 eﬁ

_87r2(V (¢))( %)

~ Ve ()" eﬁ(d)) a¢2
5 GG ) x—ﬁ
ns=1- 6e+277 r=16¢
1 Veg ~ % d¢ Oo
ST 42402 Nef_SF/,- \/Z%
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Appendix 3: Dimensionless variables

The determination of the RG flow and the existence of fixed points is usually done
for dimensionless variables. In our case, we start with dimenisonful (™)

D) = [ d5URFR DR+ V(k,5) + 50,50"0)

and end up with
4 1 m
L) = [ dx RFk @R+ V(K 9) + 50,0")

where F = k;, V= ;Z, = ‘]f, R = k; and x = xk.
More in detail, if one has individual couplings instead of functionals, like the
newton coupling, one uses Gy = Gy k2.

Notice that since limy._, ., G = G, then limy_, o, G = 0.
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Appendix 4: Fixing Constant Dimensionless field on the flow

One is usually used to writing the flow equations in terms of the dimensionless
variables ¢ defined as ¢ = kd<d+1)/2’ and keeping them constant as functions of k. For

this, one usually defines, for example F(k,3) = k*F(t,¢). In this work we used

other variables defined as ¢ = ¢* = Gy?, and we kept them constant as functions of
k. This amounts to the transformations

F(t,Gp?) = f(t,4)
FOM(t,0) G f O (t,4))

(0,n)
w nﬁcf(o n)(t w) +f(l “)(t ¢) +1 IBGf(O n+1)(t w))

n
ot G
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Appendix 5: Final Equations Syy

The change of variables realized to compactify the domain is k" = G(k).
Furthermore, we also used ¢ = ¢?. This amounts to replacing f(k, $*) — f(G, )
and v(k, ¢*) - v(G, ), and the respective derivatives

kfAO (k, ¢?) — FIO(G, ) Bg and ko0 (k, $?) - o9 (G, 1)) B, and the obvious
chain rule for . This allows us to solve the equations in the domain G € [0, G.]
instead of k € [0, oo ]. The resulting equations are

256767 (47 (F(G, ) +1) (24D (G, %) + 290D (G, 1)) =D (G, 0) (34 OV (G, $)? + 4x(F(G, ¥) + 1))
0= (v(O:D (G, 0) +12872G2) (32wG2 (39 (0D (G, ¥)2 +4m(f(G, %) + 1)) + (f(G, %) + 1) (0D (G, %) + 24002 (G, )))

(24576736701 (G, 0) - G (01 (G, 0) + 1287%G?) ((4562 - 487) 0D (G, 0) + 12877 (41G? - 487\') G)) (20(G, %) - w0 @D (G, )

247 (001D (G, 0) +12872G2)?
G (01 (G, 0) +1287%G?) ((45G2 - 48) (1) (G, 0) +128n% (41G? - 48) G*) — 245767 GEF (1) (G, 0) ) o (G, )
487 (0001 (G, 0) +12872G2)?

+G (290D (G, w) +40(G, 1))
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Appendix 5: Final Equations Syy

201 (G, 0) +1287%G?) (4567 - 48) oD (G, 0) + 12877 (41G? - 487) G?) - 491527°GOF 0D (G, 0)

0=-
2G2 (v(0:1) (G, 0) + 12872G2)?

3 (245767°GoF D (G, 0) - (001 (G, 0) + 12877G?) ((45G% - 487) 0" (G, 0) + 12877 (41G2 - 48) G?) ) OV (G, v)
@2 (001 (G, 0) + 12872G2)?

(21 (G,0) +1287%G?) ((45G2 - 487) 0(*1) (G, 0) + 12877 (41G? - 48) G?) - 245767°G*F (01 (G, 0)) £(G, w)
G2 (v (G, 0) + 12872G2)*

(245767°G°F (01 (G, 0) - (01 (G, 0) +1287%G?) ((45G” - 48) (1) (G, 0) + 12877 (4167 - 48) G?) ) 1 (G, )

2G (00D (G, 0) + 12872G2)*
8(F(G, ) +1) (256m2G* (3uf 0D (G, )2 +4m (F(G, ) + 1)) (-3 OV (G, ¥) - 6vf "D (G, ) + 8))
" (32mG2 (39 0D (G, )2 +4x (F(G, ) + 1)) + (F(G, ) + 1) (20D (G, ) + 24002 (G, 0)) )
, B0G v +D (487G (380D (G, )2 +4n(f(G, %) + 1)) (v (G, ) + 200D (G, v))) , 487D — (G, ) - 1)(G )
(327G (390D (G, )2 +4m (F(G, ) + 1)) + (F(G, %) +1) (v D (G, ) + 290D (G, %)) o
. 8((G.w) + 1) (G, 9) + 1) (60D (G, ) + 200D (G, 1)) .
(327G (3uf O (G, )2 + 4 (F(G, ) + 1)) + (f(G, %) +1) (20D (G, ) + 24002 (G, %))
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Appendix 6: Allowed boundary conditions

One can expand the flow equations near ¢ = 0, by assuming f(G, ¢?) = f1(G)¢? and
v(G, ¢*) = v1(G)¢? and expanding up to order ¢?. Furthermore, if one assumes
f1(G),v1(G) << 1, one can expand to the lowest non-trivial order in f; and v;. The
resulting equations are

82Gv1(G) + (487 - 41G*) v} (G) =0
12G£1(G)* + (967 - 82nG?) f{(G) = 0

and the solutions are (m, m{) are free parameters)

(% -G
487
i

0 . ~ . _
g () WO G0

487

U(O’l)(G,O) _ U1(G) - (];11’1(1)7]1(G) = 7718 GhIél Ul(G) =0

fOV(G,0)=f1(G) =
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Appendix 7: Different choices of free parameters m{ and m’(()

Different choices for the parameters my, m’(() lead to different results of the
emergent effective potentials. This is somewhat similar to the swampland
program in string theory, where only some parameters are compatible with
observations.

108v(0,¢%)

50 | *mg¥=6x10"10
«mg¥=5x10710
4F | empY=4x10"10
amgY=3x10"10
30 | mmg¥=2x10"10
® mg¥=1x10"10
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Appendix 8: Scaling of interactions and k limits

The construction of the Sy is subject to the knowledge of the limits of the
interactions as functions of the scale k. In the case of a negative mass dimension
coupling G = k% (like Newton’s constant)

lim G =Co = lim &~ 1imG=0
k—>0 k->0 k" k—>0
In this case, one can use the coupling G to turn all the other relevant interactions
(u®) into negative mass dimension, and all the irrelevant interactions (v") into
dimensionless. In this case, the Sy will be functions v(u), with domain [0, u, ],
where v(u.) = v, in the UV, and v(0) = v is the effective coupling in the IR. An
example of how to make a coupling dimensionless, can be the cosmological
constant

2A 2\
167G (167G)?

(A =167GA)

22/11



Appendix 8: Scaling of interactions and k limits

The same thing happens with the fields. For example, a scalar field ¢ = 75557
Since we want to work with variables that finite in the limit gf k — 0, to be able to
do numerical calculations, we can work at constant ) = G@? = Gy? where

lim G3? = lim Go? = Go@? = <
lim G™ = lim G 0P =1 < o0

also

lim G@% = lim G¢? = Gop? =1 <
k—>o00 k—>o00
working with these type of field variables allows one to map the UV and the IR
without needing to to infinite values of the field, as one would have to do when
working with constant ¢ defined as ¢ = kﬁ. This is because the only well
defined variable between those 2 in the IR is ¢, and for finite ¢, one must study
99 — 0.
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