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Abstract

In this work we study inflation, a theory proposed as an extension to the standard cosmological scenario to solve some consistency problems. It is characterized by a
primordial exponential accelerated expansion. We present the parameters ε and η that guarantee that inflation can last long enough to provide a region of causality and
stretching of the curvature of space-time. Furthermore, we present the slow-roll mechanism for the scalar field and its respective approximations for the parameters εV and
ηV . Finally, we exemplify the theory with a quadratic potential and analyze under which conditions such potential leads to inflation.

Fundamentals
The metric gµν describing the expanding spacetime and ad-
hering to the Cosmological Principle (CP) is the Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) metric, which has the fol-
low line element

ds2 = −c2dt2 + a2 (t)

[
dr2

1− kr2/R2
0

+ r2dΩ2

]
, (1)

With the temporal part of Einstein’s equation Gµν = 8πGTµν
we have the connection of General Relativity (GR) with Cos-
mology, providing the Friedmann Equation, in terms of the
Hubble parameter defined as H ≡ ȧ

a,

H2 =
8πG

3
ρ− kc2

a2R2
0

+
Λc2

3
, (2)

where k is the term related to curvature, c is the speed of light
and Λ is the cosmological constant. In this work, we portray
a possible correction to the problems present in standard cos-
mology, known as inflation. The shrinking Hubble sphere is the
fundamental definition of inflation

d

dt
(aH)−1 < 0 . (3)

We ask ourselves how long inflation needs to last in order to
solve the problems. In particular, they are solved if the entire
observable universe is smaller than the comoving Hubble radius
at the beginning of inflation. Therefore, we have the condition
(a0H0)

−1 < (aiHi)
−1 . We need to define a set that quantifies

the increasing scale factor. This is characterized by e-folds N :

Ntot ≡ ln (ae/ai) . (4)

We have determined the minimum number of e-folds needed
to result in the universe we live in. In this regard, since we know
the amount by which the Hubble radius grew during the evolu-
tion from the Big Bang through the maximum temperature TR
of the thermal plasma, we have

Ntot > 64, 47 + ln

(
TR

1015GeV

)
. (5)

This is the famous statement that solving the horizon problem
requires about 60 e-folds of inflation.

Figure 1: Illustration of how inflation resolves the problem of superhorizon
correlations. The Hubble radius is represented by the black line. A repre-
sentative scale λ is superhorizon when the CMB was created and subhorizon
during inflation. Source: Ref. [1].

Physics of Inflation
A key feature of inflation is that all physical quantities are vary-
ing slowly, despite the rapid expansion of spacetime. In this
sense, we write the time derivative of the comoving Hubble ra-
dius as

d

dt
(aH)−1 = −1

a
(1− ε) , (6)

where we introduce the first Hubble slow-roll parameter

ε ≡ −d lnH

dN
= − Ḣ

H2
. (7)

Here dN ≡ d ln a = Hdt. The near scale-invariance of the
observed fluctuations requires that ε ≪ 1. We want inflation
to generally achieve 60 e-folds. This requires ε to remain small
for a sufficiently large number of Hubble times. This condition
is measured by a second Hubble slow-roll parameter.

η ≡ d ln ε

dN
=

ε̇

Hε
. (8)

For |η| < 1, the fractional change of ε per e-fold is small, and
inflation persists.

Scalar Field Dynamics
The simplest models of inflation implement time-dependent dy-
namics during inflation in terms of the evolution of a scalar field,
ϕ (t, x), called the inflaton, as shown in Fig. 2. If the energy
associated with the scalar field ϕ (t, x) dominates the universe,
then it drives the evolution of the FLRW background. We want
to determine under what conditions this can lead to an inflation-
ary expansion.

Figure 2: Example of a slow-roll potential. The inflaton scalar field is rep-
resented by the ball. Inflation occurs in the shaded part of the potential; in
the potential well, the universe undergoes reheating, where particles of the
standard model are formed. Source: Ref. [1].

The action of the scalar field involves a kinetic part and a po-
tential part, as described below:

S =

∫
d4x

√
−g

[
−1

2
gµν∇µϕ∇νϕ− V (ϕ)

]
, (9)

where g ≡ det
(
gµν

)
. When we vary the action S with respect

to the field ϕ, we obtain the general Klein-Gordon equation

□ϕ = −∂V

∂ϕ
. (10)

Specifying this for the FLRW metric, we obtain the equation
of motion:

ϕ̈ + 3Hϕ̇ = −∂V

∂ϕ
. (11)

The expansion of space-time generates Hubble friction 3Hϕ̇.
Given Eq. (9), it is natural to assume the Hamiltonian, or the en-
ergy density, as ρϕ = 1

2ϕ̇
2 + V (ϕ). With the continuity equation

ρ̇ϕ = −3H
(
ρϕ + Pϕ

)
, (12)

and with the result ρ̇ϕ = 3Hϕ̇2, we infer the pressure

Pϕ =
1

2
ϕ̇2 − V (ϕ) . (13)

This pressure will determine the acceleration of expansion
linked to the Raychaudhuri Equation, which is obtained
through the spatial part of Einstein Field Equation. There is
a proportionality ä ∝ −

(
ρϕ + 3Pϕ

)
. However, if the kinetic

energy of inflation is much less than the potential energy, then
Pϕ ≈ −ρϕ. That is, the inflationary potential temporarily
acts as a cosmological constant, promoting a period of expo-
nential expansion.

Slow-roll Inflation
The dynamics during inflation is determined by a combination
of Eq. (2) and Eq. (11).

A slowly rolling field

Hereafter, we determine the parameter ε for a slowly rolling
field. To do this, we find the Hubble rate by taking the tem-
poral derivative of Eq. (3) with κ = 0 and Λ = 0, substituting ρϕ
and Eq. (11). Thus, we have

Ḣ = −1

2

ϕ̇2

M2
Pl

. (14)

Inflation occurs if the kinetic energy density has a small
contribution to the total energy density. This situation is
known as slow-roll inflation and has the condition ε ≪ 1.
The slow-roll behavior persists if the acceleration of the scalar
field is also small. It is useful to define a dimensionless acceler-
ation per Hubble time

δ ≡ − ϕ̈

Hϕ̇
. (15)

When δ is small, the friction term in Eq. (11) dominates and
the velocity of the inflaton is determined by the slope of the po-
tential. Furthermore, as long as δ is small, the kinetic energy
of the inflaton remains subdominant and inflationary expansion
continues.

Slow-roll approximation

We will use conditions to simplify the equations of motion. This
is called the slow-roll approximation. First, we note that the
condition ε ≪ 1 implies ϕ̇2 ≪ V , hence H2 ≈ V

3M 2
Pl

. In this ap-
proximation, the Hubble expansion rate is entirely determined
by the potential. Next, we see that the condition |δ| ≪ 1 implies

3Hϕ̇ ≈ −dV
dϕ . With ε = 1

2
ϕ̇2

M 2
PlH

2, we have the approximation

εV ≈
M2

Pl

2

(
V ′

V

)2

. (16)

In order to study the parameter δ in the slow-roll approxima-
tion, we take the time derivative of ε and obtain

ηV ≡ δ + ε ≈ M2
Pl
V ′′

V
. (17)

A successful inflation occurs when these parameters are much
smaller than unity, i.e., εV , ηV ≪ 1. The total number of e-folds
of accelerated expansion is

Ntot ≡
∫ ae

ai
d ln a =

∫ ϕe

ϕi

H

ϕ̇
dϕ . (18)

In the slow-roll regime, we can use Eq. (16) to write the inte-
gral over the field space as

Ntot ≈
∫ ϕe

ϕi

1√
2εV

|dϕ|
MPl

. (19)

As we saw in the section ”Fundamentals”, a solution to the hori-
zon problem requires Ntot ≳ 60, which provides an important
constraint on successful models of inflation.

Study case: quadratic inflation

For example, let us analyze arguably the simplest inflationary
model: single-field inflation driven by a mass term

V (ϕ) =
1

2
m2ϕ2 . (20)

This model is ruled out by observations of the CMB, but still
provides a useful example to illustrate the mechanism of slow-
roll inflation. Given Eq. (20), the parameters εV , ηV are

εV = ηV = 2

(
MPl

ϕ

)2

. (21)

To satisfy the conditions of slow-roll, we need to consider
super-Planckian values ϕe ≡

√
2MPl. As the field moves from

ϕi → ϕe, the number of e-folds of inflationary expansion is

Ntot =
ϕ2i

4M2
Pl

− 1

2
. (22)

To achieve Ntot > 60, the initial field value must satisfy

ϕi > 2
√
60MPl ∼ 15MPl . (23)

We note that the total field excursion is super-Planckian, ∆ϕ =
ϕi − ϕe ≫ MPl.

Conclusions
In this study we address the physics of inflation and obtain some
results that provide the path to the equation of motion of the in-
flaton scalar field ϕ, as well as the conditions that cause the infla-
tionary potential to temporarily act as a cosmological constant.
In slow-roll inflation, we saw an expression for the total number
N of e-folds that can resolve the horizon problem. Finally, we
study quadratic inflation and, with the parameter εV , we obtain
the condition (relating the scalar field ϕ and the Planck mass)
that leads to inflation via a quadratic potential.
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