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Field equations of GR

The variational principle is one of the most fundamental
orinciples of physics and most modern theories are formu-

ated in its terms. Although the field equations of General

Relativity were first obtained by Einstein through heuris-
tic arguments, Hilbert showed that it is possible to obtain
them through the variational principle. The action is de-
fined as being the integral of a Lagrangian density over

space,
S = Jd“xc. (1)

In principle, we can define a total action S such that this
action represents the sum of the contributions of the grav-
itational field S, and the matter fileds Sy,

S =S4+ Sm. (2)

Let us first consider the action of the gravitational field.

The action S is given by

C3

= o J d*xR\/—g. (3)

Henceforth, we consider variation 0 with respect to the

Sg

gravitational field, g,v — g+ + 0guy. The Lagrangian

density of the gravitational field is recognized as
C

3
= Kyv/—gR; kK = : 4
e = VmOR K= 100G )
By taking its variation with respect to the metric:
6[,9 — K [V_QRFW (69HV) -+ R (6\/—9)
+v/=99"" (6Rw)|.  (5)

We can show that the last term in the above equation is

a surface term and can therefore be neglected, as it does

not contribute to the field equations.

Next, we consider the variation for the Christoffel symbol
6F7‘w. We use the reciprocity property of the metric ten-
sor to write: g*°gyp, = 67‘9 = 0g™" = —g**g?8g,,.
Moreover, the object 6g,s is a genuine tensor so that
we are authorized to calculate its covariant derivative:
Vy (8gus). The expression for this quantity is the same

dsS.

Ov (0gus) = Vy (59u0)‘|‘rpuv (8gps)+T"%y (8gpy) - (6)

Analogous expressions are obtained for 0, (dgys) and
O (0gus). Using these results on the expression for the
variation of the Christoffel symbol, we can show that the
terms involving the connections cancel each other out and
so we get

|

5r}\m, — 29)\6 Vy (69u0) - vu (69\/0) — Vs (69uv)] :

(7)

Thus, even though the connection F)‘H is not a tensor,

v

6F)‘w Is a tensor. Therefore, its covariant derivative can

be computed:

Ve (87, ) = 0c (8T,

— M (M}\m) — (M}\pu) T rApK (6pr) . (8)
Also, by writing the covariant derivative V, (Sr}‘HK), by

contracting the indices v and A in both covariant deriva-

tives and by taking the difference between them, we get:

Va8 = Vi [8Ma) = 0 (87, — 0 (8T
— IO (0T + Thn (370,

+ T (8T = T (8T -

Now, by taking the variation of the Ricci tensor, OR,
we obtain an expression that is exactly the same as the
expression in the last equation, in such a way that

SRux = VA (817, ] — Vi (8T - (9)

This equation is known as the Palatini identity.

From the Palatini identity, we can then write the last term
of the Eq. (5) in the form

V=9g" R = /=g |Va (g 8T, ) — Vi (g" 0T
(10)
where we used Vagh* = 0. We can also write that the

covariant derivative of a contravariant vector with its con-

tracted indices is given by

ViV = \/%au (\/TQVH) ’ (11)

Plugging this result in the Eq. (10),
J d*x/—gg"*oR :J d*x, WA, (12)
Q Q

where
WA = \/—gg“KZSF)‘HK — \/—99“7‘61“'(“,(. (13)
Eq. (12) displays the integral sign inherited from the def-

inition of Sg.

By Gauss's theorem,
J d*xd, WH :J WHAS,.. (14)
Q 20
Egs. (12) and (14) combine into:
J d*x/—gg"*oR :J WHAS,,. (15)
Q 20

Notice that we are evaluating the left-hand side over a
spacetime region () of boundary 00) on which 6g,, =0
(see Fig. 1).

Hence, the boundary 0Q):

S (8G1y),, = 0= WH (oI, ). =0.  (16)

Thus the total divergence does not contribute to the field
equations, that is, the right-hand side of Eq. (15) van-

ishes:

d*x/—gg"*dR, = 0. (17)

This eliminates the last term in Eq. (5) under the integral

sign requires by Eq. (3).
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Figure 1: A spacetime () with boundary 0(). The varia-

tion of the metric tensor vanishes on the boundary.

Let us now look at the term & (\/—g), which appears in
the second term in Eq. (5). The derivative of the deter-
minant of the metric g, is given by

009 = 99" 9,g,v- (18)

We can also write that

1 § 1 §
0pV—9 = V=99 0pguy = — v =99y (8g™").

(19)
This reduces the action integral to:
c ]
5S, = d*x |v/—g8g"" Ry — 2Rgv|l. (20
9 16tG JQ I gog M 2 Ju ( )

The principle of least action prescribes that 0S4 must be
zero for an arbitrary dg"Y in any hypervolume. For this,
the term in square brackets must be zero, since the term
v/—9dg"Y cannot be zero within (). In this way, we ob-

tain: ]
RHV — ZQHVR — O, (21)

which are the Einstein’s field equations in vacuum.

In order to model the interaction of matter and energy
with the gravitational field, we introduce the energy-
momentum tensor definition. Accordingly, a variation
0guv in the gravitational field will produce a variation in
the action of matter S., Eq. (2), postulated as:

1
OSm = —J d*x/—gdg"' T,y (x) . (22)
2C 0

Moreover, Eq. (2) under the variation of g, reads:

5S = 5S4 + 0Sm

|

RHV — ZRg v

¢ A
- J=a6g""
167TGJQdX J9°9

]
— ZJ d*x/—gdg"' T,y (x) . (23)
CJo

Taking 0S = 0 and factorizing the integrals, yields:

| TonG 1
Ruv_zRguv =3 ZCT”V (x) . (24)

By rearranging the constants, we obtain

| 31t

Ruv = 59w R =" 5 Tuv. (25)

These are the famous Einstein’s field equations in the pres-
ence of a source (matter and energy).
We can also obtain an expression of T, in terms of the
matter Lagrangian density from Eq. (22). In fact, from
the definitions of the action of matter

S = Jd4x\/—g£m, (26)
we compute Its variation
55, — J d'x5 (v/=gLom), (27)

and compare with Eq. (22) to write:

[ atxs (v=gLn) = - [ av=g89" T, (28

- 2c
l.e.,

5 (v=gLm) = Vo580 e (29)

Isolating T, we get:

o —2¢ D (\/jgﬁm)
THV — \/_—g 59“V ) (30)

which provides a definition for the energy-momentum ten-

sor in terms of the variation of the matter Lagrangian den-

sity with respect to the gravitational field metric.
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