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Field equations of GR
The variational principle is one of the most fundamental
principles of physics and most modern theories are formu-
lated in its terms. Although the field equations of General
Relativity were first obtained by Einstein through heuris-
tic arguments, Hilbert showed that it is possible to obtain
them through the variational principle. The action is de-
fined as being the integral of a Lagrangian density over
space,

S =

∫
d4xL. (1)

In principle, we can define a total action S such that this
action represents the sum of the contributions of the grav-
itational field Sg and the matter fileds Sm,

S = Sg + Sm. (2)
Let us first consider the action of the gravitational field.
The action Sg is given by

Sg =
c3

16πG

∫
d4xR

√
−g. (3)

Henceforth, we consider variation δ with respect to the
gravitational field, gµν → gµν + δgµν. The Lagrangian
density of the gravitational field is recognized as

Lg = κ
√
−gR; κ =

c3

16πG
. (4)

By taking its variation with respect to the metric:
δLg = κ

√−gRµν (δg
µν) + R

δ
√
−g



+
√
−ggµν (δRµν)

 . (5)
We can show that the last term in the above equation is
a surface term and can therefore be neglected, as it does
not contribute to the field equations.
Next, we consider the variation for the Christoffel symbol
δΓλµν. We use the reciprocity property of the metric ten-
sor to write: gλσgσρ = δλρ =⇒ δgλσ = −gλκgσρδgκρ.
Moreover, the object δgµσ is a genuine tensor so that
we are authorized to calculate its covariant derivative:
∇ν (δgµσ). The expression for this quantity is the same
as:
∂ν (δgµσ) = ∇ν (δgµσ)+Γρµν (δgρσ)+Γρσν (δgρµ) . (6)

Analogous expressions are obtained for ∂µ (δgνσ) and
∂σ (δgµσ). Using these results on the expression for the
variation of the Christoffel symbol, we can show that the
terms involving the connections cancel each other out and
so we get

δΓλµν =
1

2
gλσ [∇ν (δgµσ) + ∇µ (δgνσ) − ∇σ (δgµν)] .

(7)
Thus, even though the connection Γλµν is not a tensor,
δΓλµν is a tensor. Therefore, its covariant derivative can
be computed:

∇κ

δΓλµν
 = ∂κ

δΓλµν


− Γρµκ
δΓλρν

 − Γρνκ
δΓλρµ

 + Γλρκ
δΓρµν

 . (8)
Also, by writing the covariant derivative ∇ν

δΓλµκ
, by

contracting the indices ν and λ in both covariant deriva-
tives and by taking the difference between them, we get:

∇λ

δΓλµκ
 − ∇κ

δΓλµλ
 = ∂λ

δΓλµκ
 − ∂κ

δΓλµλ


− Γρµλ
δΓλρκ

 + Γλρλ
δΓρµκ



+ Γρµκ
δΓλρλ

 − Γλρκ
δΓρµλ

 .

Now, by taking the variation of the Ricci tensor, δRµκ,
we obtain an expression that is exactly the same as the
expression in the last equation, in such a way that

δRµκ = ∇λ

δΓλµκ
 − ∇κ

δΓλµλ
 . (9)

This equation is known as the Palatini identity.
From the Palatini identity, we can then write the last term
of the Eq. (5) in the form
√
−ggµκδRµκ =

√
−g

∇λ

gµκδΓλµκ
 − ∇κ

gµκδΓλµλ


 ,
(10)

where we used ∇λg
µκ = 0. We can also write that the

covariant derivative of a contravariant vector with its con-
tracted indices is given by

∇µV
µ =

1√
−g

∂µ
√−gVµ

 . (11)

Plugging this result in the Eq. (10),∫
Ω

d4x
√
−ggµκδRµκ =

∫
Ω

d4x∂λW
λ, (12)

where
Wλ =

√
−ggµκδΓλµκ −

√
−ggµλδΓκµκ. (13)

Eq. (12) displays the integral sign inherited from the def-
inition of Sg.
By Gauss’s theorem,∫

Ω

d4x∂µW
µ =

∫
∂Ω

WµdSµ. (14)

Eqs. (12) and (14) combine into:∫
Ω

d4x
√
−ggµκδRµκ =

∫
∂Ω

WµdSµ. (15)

Notice that we are evaluating the left-hand side over a
spacetime region Ω of boundary ∂Ω on which δgµν = 0

(see Fig. 1).
Hence, the boundary ∂Ω:

δΓλµκ (δgµν)
∣∣∣∣∣∣∣∂Ω = 0 ⇒ Wµ

δΓλµκ


∣∣∣∣∣∣∣∂Ω = 0. (16)
Thus the total divergence does not contribute to the field
equations, that is, the right-hand side of Eq. (15) van-
ishes: ∫

d4x
√
−ggµκδRµκ = 0. (17)

This eliminates the last term in Eq. (5) under the integral
sign requires by Eq. (3).

Figure 1: A spacetime Ω with boundary ∂Ω. The varia-
tion of the metric tensor vanishes on the boundary.

Let us now look at the term δ (
√
−g), which appears in

the second term in Eq. (5). The derivative of the deter-
minant of the metric gµν is given by

∂ρg = ggµν∂ρgµν. (18)
We can also write that
∂ρ

√
−g =

1

2

√
−ggµν∂ρgµν = −

1

2

√
−ggµν (δg

µν) .

(19)
This reduces the action integral to:

δSg =
c3

16πG

∫
Ω

d4x


√
−gδgµν

Rµν −
1

2
Rgµν



 . (20)

The principle of least action prescribes that δSg must be
zero for an arbitrary δgµν in any hypervolume. For this,
the term in square brackets must be zero, since the term
√
−gδgµν cannot be zero within Ω. In this way, we ob-

tain:
Rµν −

1

2
gµνR = 0, (21)

which are the Einstein’s field equations in vacuum.
In order to model the interaction of matter and energy
with the gravitational field, we introduce the energy-
momentum tensor definition. Accordingly, a variation
δgµν in the gravitational field will produce a variation in
the action of matter Sm, Eq. (2), postulated as:

δSm = −
1

2c

∫
Ω

d4x
√
−gδgµνTµν (x) . (22)

Moreover, Eq. (2) under the variation of gµν reads:

δS = δSg + δSm

=
c3

16πG

∫
Ω

d4x
√
−gδgµν

Rµν −
1

2
Rgµν



−
1

2c

∫
Ω

d4x
√
−gδgµνTµν (x) . (23)

Taking δS = 0 and factorizing the integrals, yields:
Rµν −

1

2
Rgµν

 =
16πG

c3
1

2c
Tµν (x) . (24)

By rearranging the constants, we obtain

Rµν −
1

2
gµνR =

8πG

c4
Tµν . (25)

These are the famous Einstein’s field equations in the pres-
ence of a source (matter and energy).
We can also obtain an expression of Tµν in terms of the
matter Lagrangian density from Eq. (22). In fact, from
the definitions of the action of matter

Sm =

∫
d4x

√
−gLm, (26)

we compute its variation

δSm =

∫
d4xδ

√−gLm

 , (27)

and compare with Eq. (22) to write:∫
d4xδ

√−gLm

 = −
1

2c

∫
d4x

√
−gδgµνTµν, (28)

i.e.,

δ
√−gLm

 =
√
−g

(−2c)
δgµνTµν. (29)

Isolating Tµν, we get:

Tµν =
−2c√
−g

δ (
√
−gLm)

δgµν
, (30)

which provides a definition for the energy-momentum ten-
sor in terms of the variation of the matter Lagrangian den-
sity with respect to the gravitational field metric.
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