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Introduction

Nowadays it’s possible to detect gravitational waves of black holes and neutron
stars coalescences [1]. But these detections were made in a region not very dif-
ferent, where there is practically no curvature of spacetime. So when we want
to study gravitational waves from the primordial universe, we should use the
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) metric [4], which is the stan-
dard model for an expanding universe. In this way, the background metric is
no longer Minkowski, that is, flat.

Shortwave approximation

For a general metric, was made a perturbation hµν on the background g(B)µν

gµν = g(B)µν + hµν, (1)

and the raising and lowering of indices was made with respect to the back-
ground metric g(B). As an analogy, one can think these perturbation as a rough-
ness in a surface of an orange, that does not change its geometry in ”large scale”.
In order to use this new metric in the Einstein equations, which is given by [5]:

Rµν = χ

(
Tµν −

1
2

gµνT
)

, (2)

first one need to find the inverse metric in second order:

gµν = g(B)µν − hµν + hµαhν
α − hµαhβ

αhν
β + O(h3) (3)

In this manner, one can find the Ricci tensor:

Rµν = RB
µν + R(1)

µν + R(2)
µν + ... (4)

Since it is a metrics variation, the Ricci tensor also has variation, described by
Eq (4). But to discriminate each one of its terms, the variation of Ricci tensor:

δRµν = ∂µδΓ α
µν − ∂αδΓα

µν + Γ α
µλδΓ λ

αν + Γ λ
αν δΓ α

µλ − Γ α
αλδΓ λ

µν − Γ λ
µν δΓ α

αλ (5)

Applying the Eq. (3) in Eq. (5)[3]:

δRµν =
1
2

[
∇ν∇µh +∇α∇νh α

µ −∇α∇νhα
ν +□hµν

]
+ O(h2) (6)

where the first term that has order h refers to R(1)
µν . So, the first-order approx-

imation and the propagation of vacuum space waves will be considered, such
as:

R(1)
µν =

1
2

[
∇ν∇µh +∇α∇νh α

µ −∇α∇νhα
ν +□hµν

]
= 0 (7)

In constructing the linearized theory, the reverse trace of hµν was employed,
enabling its application here:

hµν = h̄µν −
1
2

g(B)µν h̄ (8)

Finally, it was identified the propriety of second order covariant derivative ten-
sor:

∇α∇βSµν = ∇β∇αSµν + R µ
αρβSρν + R ν

αρβSµρ (9)

Applying the Eq. (9) and Eq. (8) in Eq. (7):

□h̄µν − g(B)µν ∇α∇βh̄βα −∇ν∇λh̄ λ
µ

∇µ∇λh̄λ
ν + 2Rµλνγh̄γλ − Rνγh̄ γ

µ − Rµγh̄γ
ν = 0 (10)

In a vacuum propagation scenario, the last two terms of Eq. (8) have vanished.
Once again, retrieval from the linearized theory occurs through an appropriate
choice of a quadrifunction, leading to the application of the Lorenz gauge, thus:

∇λh̄λα = 0 (11)

The equation to describe the gravitational waves propagation in a curved
background is:

□h̄µν + 2R(B)
µανβh̄αβ = 0 (12)

But we can take a first approximation, and the curvature tensor drops out[2]:

□h̄µν = 0 (13)

FLRW metric
In an expanding universe, the metric cannot be stationary, so the terms related
to spatial coordinates gain the expansion factor a(t), and for this model, we use
the FLRW metric:”

ds2 = −c2dt2 + a(t)2[dr2 + Sκ(r)2dΩ2] (14)
Let us consider a flat universe, that is, κ = 0, so the curvature tensors and

connections will be:
Γ 0

ij = a2Hδij (15)

Γ j
i0 = Hδ

j
i (16)

R 1
010 = R 2

020 = R 3
030 = Ḣ + H2 (17)

R 0
101 = R 0

202 = R 0
303 = −a2

(
Ḣ − H2

)
(18)

R 3
131 = R 3

232 = R 2
121 = −a2H2 (19)

Now we apply the Lorenz gauge, Eq. (11) and the TT gauge, put in the Eq.
(13):

ḧij − 1
a2∇

2hij − 3Hḧij = 0. (20)

The solution of plane waves by a Fourier transformation is[5]:
hij = eijDq(t)eiq·x (21)

So:

D̈q + 3HḊq +
q2

a2Dq = 0 (22)

where the Dq depends on the era of the universe. This is a damped harmonic os-
cillator of gravitational waves, with the expansion factor defines the frequency
of the wave and the damping.
For another hand, if we use the Eq. (12), considering the curvature tensor:

ḧij −
1
a2∇

2hij + 3Hḣij + 2ȧ2hij = 0. (23)

and the spatial solution is:

D̈q + 3HḊq +

(
q2

a2 + 2ȧ2

)
Dq = 0 (24)

It is important to note that the curvature tensor changes the frequency of grav-
itational waves. This suggests that during extreme times, we may consider the
shortwave formalism. However, if we neglect the curvature tensor and focus
solely on the past, we can calculate the gravitational waves.

Conclusion
The shortwave formalism can describe the propagation in a curved background
and can be used to explore distant eras of the universe using the FLRW metric.
The expansion factor is responsible for the frequency and damping of the grav-
itational wave, and the approximation of the curvature tensor in Eq. (13) allows
us to study the earlier universe because the curvature tensor drops out. How-
ever, if we want to study the future of the universe, this tensor needs to be
considered.
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