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Introduction

Superradiance 1s a physical phenomenon involving the amplification of incident electromagnetic
radiation through the extraction of energy from a system. This work analyzes the conditions for
the occurrence of superradiance in electrically charged, spherical, and static wormholes, using
Podolsky’s generalized electromagnetic theory. Given a metric representing the wormhole and
its electric field, minimal coupling is applied in the Klein-Gordon equation to determine the nec-
essary conditions for superradiance in the solution of the radial equation. By using Maxwell’s
electromagnetic theory as a limiting case for generalized electrodynamics, we aim to estimate the
parameter arising from the non-minimal coupling in Podolsky’s theory. We estimate the reflection
coefficient of an electromagnetic wave scattered by a wormhole in Bopp-Podolsky electrodynam-
ics. Preliminary results are presented based on the approximation Ay, =~ A; in the Bopp-Podolsky
wormhole metric, justified by the low relative percentage error between the terms Ay, and A; of
the metric components.

Wormbhole (perturbative) solution

Let us take Einstein’s equation below, whose energy-momentum tensor is given according to
Podolsky electrodynamics [1]:
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are terms of the energy-momentum tensor such that T% 1s the term related to Maxwell’s electro-
dynamics, while the terms T T/’jy come from Podolsky electrodynamics, where the latter 1s due
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to a non-minimal coupling. Together with:
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they provide the energy-momentum tensor. Looking for a metric g, that is spherically symmetric
and static, space-time must be of the following form:

ds® = —A(r)dt* + B (r)dr* + r*dQ)’ (8)

where d? = df? + sin” 0d¢* and A (r) and B (r) are functions to be determined. Due to the spher-
ically symmetric mass distribution, the electric field has only a radial component and the only
non-zero term of the electromagnetic tensor is:
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where () 1s the electrical charge. The metric-tensor 1s:
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It is important to highlight that the solution (10) was obtained through perturbative methods by
[2], where it was interpreted as a wormhole due to the fact that A(r) # B(r) ..

Superradiance condition

To analyze the possibility of superradiant scattering by monochromatic waves, we use the mass-
less Klein-Gordon equation to couple the electromagnetic wave to the field [3]. The Klein-Gordon
equation 1s solved through separation of variables and numerical methods. Due to spherical sym-
metry, only the radial equation 1s needed to investigate superradiance:

d d [Aoo [ K7 _

OMB? 110QY\ —
K]23 — <wr — QQ (1 — 3 + 57’? >> , A = AllAOO. (14)

Defining f = rR and changing coordinates dr*/dr = r°//A, we can evaluate the potential term
of the equation 1n two limits: far away from the wormhole and close to the throat. Through this
analysis, the solution to equation (13)) must have the following structure:
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where
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We interpret the plus and minus signs in the above functions as outgoing and 1ingoing waves,
respectively. From the definition of the reflection and transmission coefficients, we find the fol-

lowing relationship:
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Hence, the superradiance condition for a static, spherical wormhole described by equation (9)) is:
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Preliminary numerical results

The energy-momentum tensor of the equation (1)) has two additional terms to Maxwell’s, accom-
panied by the parameters a and b of Podolsky’s theory. The first, proposed by Podolsky as a
correction to Maxwell’s theory, and the second, originating from a non-minimal coupling when
considering curved space-time. Both parameters a and b are expected to be small perturbations,
so that a,b < 1.

The reflection coefficient determines the amplitude of the reflected wave in relation to the in-
cident wave. Therefore, we must know the wave equation, solution of the equation (13)). The
terms A, Ay and Ay, present in this equation come from the wormhole metric (10]), obtained in a
perturbative way.

When considering the parameter b a small but non-zero disturbance, we make the approxima-
tion Ay ~ Ay;. In fact, when we take b = 0, we obtain the Reissner-Nordstrom solution, that 1s,
A(r) = B~ !(r). As a consequence, making A ~ A;; in the equation (13)), we can write it as:
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and for b = 0, we have the limiting case of a Reissner-Nordstrom black hole. We interpret the
metric (19) as a spherical and static black hole in Podolsky electrodynamics.

The following graph relates the reflection coefficient for different values of the parameter b. To
do this, we are considering b < 1, so we are making the approximation Ay, ~ A;; in the radial
equation ((13)).
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Influence of different values of parameter b on the reflection coefficient.

In the graph above, we kept the parameters M = 1, ¢ = 1 and () = 0.999, and 1nvestigated
the impact of the non-minimum coupling term on the reflection coefficient, comparing it with the
Reissner-Nordstrom case (b = 0). It 1s observed that as b approaches zero, the reflection coefficient
tends to equal that of the Reissner-Nordstrom case, as expected. However, for larger values of b,
even when b < 1, the reflection coefficient curve shows significant changes. This shows that the
parameter b exerts a substantial influence on the superradiance, modifying the expected behavior
of the system.

Final remarks

This work presented the condition for superradiance to occur in Podolsky electrodynamics.
Through a perturbative solution of the field equations, a metric was obtained that describes a
wormhole in Podolsky electrodynamics, where the parameter b arises from non-minimal cou-
pling. By considering the parameter b sufficiently small, we made the approximation Ay ~ Aq; in
the metric, interpreting this result as a perturbation of the Reissner-Nordstrom black hole. With
this result, we graphically analyzed the magnitude of the reflection coefficient for some values of
b, comparing 1t with the Reissner-Nordstrom limiting case when b tends to zero. Future proposals
involve estimating the limiting values of the parameter b through the superradiance condition and
determining the reflection coefficient for a more general situation.
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