EXOTIC SEARCHES AT LHC AND TEVATRON

Shahram Rahatlou

Seminario alla Russa Roma, 29 September 2011

DIPARTIMENTO DI FISICA

DISCLAIMER

- More than 30 results produced by ATLAS and CMS alone for Summer in exotic searches
 - at least 20 more SUSY-only results!
 - A wonderful 2011 for LHC so far
- More than 60 results from Tevatron and LHC covering a large variety of theoretical models
- Snapshot of most recent results and not a comprehensive review
 - Many of Tevatron results now superseded at LHC not reported due to time constraints
- Complete list of results
 - ATLAS: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults</u>
 - CDF: <u>http://www-cdf.fnal.gov/physics/physics.html</u>
 - CMS: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO</u>
 - D0:<u>http://www-d0.fnal.gov/Run2Physics/WWW/results.htm</u>

SUSY OR EXOTIC?

- SUSY signatures very rich and depend on particular choice of parameters
 - events divided in categories of lepton or b-jets
 - look at MET and look for excess on top of Standard Model
- Experimentally: divide searches based on MET
 - SUSY: searches where MET is main or only discriminator
 - EXOTIC: where there is no MET or at least not the only discriminator
 - resonances, heavy particles, decays in final state ALSO with MET
- SUSY results typically provided in (m₀,m_{1/2}) or (m_q,m_g) plane
 - primary parameters determining mass of SUSY particles

SIGNATURE- OR TOPIC-BASED?

- Same final state often probing very different models or topics
 - 2 leptons, 2jets + MET, lepton+jet+MET
- Topological presentation requires jumping between different types of physics being addressed

Lepton-Photon 2011

- This talk following a topic-based approach Henri Bachacou, Irfu CEA-Saclay
 - easier to combine constraints on model from different topologies
 - Same final state is not simple re-interpretation
 - often optimization redone to deal with different acceptance for very different models
 - Ifferent analysis strategy and signal extraction methods

OUTLINE

- Heavy Resonances
 - dileptons
 - lepton+MET
 - diphotons
 - dijets
 - heavy neutrinos
 - -WZ
 - W+jj
- Extra dimensions
 - dileptons
 - diphotons
 - jet/photon + MET
 - Black Holes

- LeptoQuarks
 - Ist generation
 - 2nd generation
- 4th generation b'/t'
 - all hadronic
 - semileptonic
- Long-lived particles
 - stopped particles
 - displaced vertices
- Compositeness
 - excited leptons

ATLAS AND CMS

- 3.8T solenoid containing calorimeters
- Silicon tracker: $\sigma(p_T)/p_T \sim 15\%$ at 1TeV
- EM cal: homogeneous Lead-Tungstate crystal, σ_E/E ~ 3%/√E[GeV] ⊕ 0.5%

Iron return yoke muon spectrometer

- 2T solenoid inside calorimeters
- Silicon+TRT tracker + electron ID
- EM cal: Longitudinally segmented Lead-Ar: σ_E/E ~ 10%/√E[GeV] ⊕ 0.7%
- HAD cal: Fe-scint + Cu-Ar, ≥11 λ_0 $\sigma_E/E \sim 50\%/\sqrt{E[GeV]} ⊕ 3\%$
- Air-toroid muon sp.: $\int \sqrt{B} dI = 1$ to 7 T.m

HEAVY RESONANCES

7

HEAVY RESONANCES

- New gauge bosons predicted by many extensions of the Standard Model with extended gauge symmetries
 - Z_{SSM} in Sequential Standard Model with same Z0 coupling as in Standard Model
 - Z' models from E6 and SO(10) GUT groups
 - The Kaluza-Klein model from Extra Dimension
 - Little, Littlest Higgs model
- No precise prediction for mass scale of gauge bosons
- Technicolor also predicts variety of narrow heavy particles
- Backgrounds
 - relatively clean with good S/B
 - mostly tails of SM processes
- Experimental challenges
 - detector resolution can be a key player
 - extra care for energy/momentum reconstruction above I TeV

DI-ELECTRON

Several events with mass of I TeV

DI-LEPTON EXCLUSIONS

Limits approaching 2 TeV for most models J B [pb] Similar expected and observed and observed and observed and the specied limits for both experiments $G^* \rightarrow \parallel$ Expected $\pm 2\sigma$ Observed limit Excluded $k/M_{Pl} = 0.1$ RS G* k =0.05 RS G* k=0.10 10⁻¹ $Z'_{8}SM_{A} = 0.05 Z' \psi$ mass (TeV) $k/M_{PI} = 0.03$ k/M_ = 0.01 ATLAS 1.49 1.33 1.63 CMS 2.00 10⁻² 1.62 1.49 1.79

ee: $\int L dt = 1.08 \text{ fb}^{-1}$

uu: $\int L dt = 1.2 Sh! Rahatlou$

YY

DI-JET

ATLAS-CONF-2011-095 CMS: arXiv:1107.4771 Events dơ/dm (pb/GeV) 10 ATLAS Preliminary 10⁵ CMS (1.0 fb⁻¹) Fit Data 10⁴ 1 QCD Pythia + CMS Simulation JES Uncertainty — Fit 10³ S (1.8 TeV) 10 Excited Quark String Resonance $\sqrt{s} = 7 \text{ TeV}$ 10² 10-2 $Ldt = 0.81 \text{ fb}^{-1}$ S (2.6 TeV) q* (1.5 TeV 10 10⁻³ 1 10-4 q* (2.3 Te √s = 7 TeV 10-1 $|\eta| < 2.5, |\Delta \eta| < 1.3$ 10⁻⁵ significance Wide Jets Significance -2 3000 3500 400 Dijet Mass (GeV) 2500 2000 1500 1000 4000 1000 2000 4000 3000 Reconstructed m_{ii} [GeV]

- Resonances predicted in numerous models
 - larger branching fraction compared to dileptons
 - much higher background from QCD

q, q, g, g q, q, g, g

DI-JET EXCLUSION LIMITS

Now excluding resonances below 2 TeV for variety of models

Excluded mass (TeV)	q*	Axigluon Coloron	Color octet scalar	String resonances	E6 diquark
ATLAS	2.91	3.21	1.91		
CMS	2.49	2.47		4.00	3.52

Sh. Rahatlou

t-tbar

- Boosted top jets for heavy resonances
- Take advantage of sub-structure in t \rightarrow bW

Jet 2

Jet 3

Jet 1

Jet 2

t-tbar

Sh. Rahatlou

- Look for heavy W-like Jacobian peak in transverse mass $m_T = \sqrt{2p_T \not\!\!\!E_T (1 \cos\Delta\phi_{\ell, \not\!\!\!E_T})}$
 - e.g. Sequential SM and Technicolor
- Dominant background:W production in Standard Model

Exclusion Limits now past 2 TeV

Heavy Neutrino and W_R

WZ RESONANCES

WZ EXCLUSION LIMITS

ZZ RESONANCE

http://www-cdf.fnal.gov/physics/exotic/r2a/20110718.highmasszz/index.html

Sh. Rahatlou

₩+IJ

- Structure in M_{jj} in W+W/Z cross section measurement reported by CDF
 - Background of interest for Higgs and several exotic searches

SUMMARY OF W+JJ AT TEVATRON

• M_{jj} structure not confirmed by D0

- small differences exist but unlikely to wash out a peak

D0 measured cross section: 0.82 ± 0.83 pb

Original CDF cross section: ~4 pb

• Latest CDF: 3.0 ± 0.7 pb

CDF: http://www-cdf.fnal.gov/physics/ewk/2011/wjj/7_3.html

D0: PRL 107, 011804 (2011)

• interesting cross check at LHC

W+JJ AT LHC

- Similar strategy and selection as CDF
 - #jet = 2 at CDF probably should be relaxed at LHC
 - Significance of 0.95 sigma in N>=2 sample

ATLAS-CONF-2011-096

No deviation from SM observed

Fundamental Planck Scale

Apparent Planck Scale

of EDs $M_{Pl}^2 \sim M_D^{2+n} R'$ Size of ED

EXTRA DIMENSIONS

- Large Extra Dimension (ADD)
 - only graviton propagates in the bulk
- Warped Extra Dimension (a la Randall-Sundrum)
 - as ADD with warped geometry for extra dimension

$$M_{\rm D} = M_{\rm Pl} e^{-kr_c\pi}$$

- Universal Extra Dimension (UED)
 - all particles propagate in the bulk

2 4 6 8 10 12 14 16 18 20 $\eta_{\rm G} [{\rm TeV}^{-4}]$

- Enhanced cross section at high mass
 - Large number of KK states
 - not a single resonance to resolve but rather a continuum enhancement
- Counting experiment for $M > M_{min}$

$$\sigma_{\text{ADD}} = \sigma_{\text{SM}} + A\eta_G \ \sigma_{\text{int}} + B\eta_G^2 \ \sigma_{\text{ED}}$$
$$\eta_G = \mathcal{F}/M_S^4$$
$$\mathcal{F} = \begin{cases} \log\left(\frac{M_S^2}{\hat{s}}\right) & \text{if } n_{\text{ED}} = 2\\ \frac{2}{(n_{\text{ED}}-2)} & \text{if } n_{\text{ED}} > 2 \end{cases}$$

Upper Limit on M_s (no K-factor)

	n = 2	n = 3	n = 4	n = 5	n = 6	n = 7
μμ	2.6	3.1	2.6	2.3	2.1	2.0
ΥY	3.2	3.4	2.8	2.6	2.4	2.2

μμ: PAS-EXO-11-039

γγ: PAS EXO-11-038

0.01

ation (1/2) MONO-PHOTON + MET

Sh. Rahatlou

stage approach to cleanup of the high $E_{\rm T}^{\rm miss}$ events. An initial pass at event cleanup applies

KIOSS SECENTIS OF EVALUATING TO A MATTER A VILLE A VILLE A MATTER AT A MADE TO A MALES THE

MICROSCOPIC BLACK HOLES

- Microscopic black holes decaying due to Hawking radiation
- General assumption: isotropic and democratic decay in all species
 - high multiplicity final state
 - CMS: multi-jet+lepton events with large total transverse energy
 - ATLAS: multijet. Also same-sign dilepton in high track-multiplicity events
 - Also search for Quantum Black Holes in di-jet final state ATLASNew Journal of Physics 13 (2011) 053044

CMS: PAS EXO-11-071

ATLAS-CONF-2011-065

ATLAS-CONF-2011-068

Ι	Model paran		
M_{LQ}	LQ		
β	BR(LQ		
$\lambda_{l\text{-}q\text{-}LQ}$	l-q-LQ		
LQs can be scalar			

(*) In this stu

LEPTOQUARKS

200 300 400 500 600 STMPLEEVINERATION

10⁻¹,

100

2ND GENERATION

LONG-LIVED PARTICLES

HEAVY STABLE CHARGED PARTICLES

- Gluinos and stops hadronizing in heavy R-hadrons (mixture of SM and SUSY particles)
 - Large ionization in silicon tracker
 - Very slow hence long time of flight (TOF)
- Dedicated muon-like reconstruction and mass estimate from TOF and dE/dX

STOPPED HEAVY PARTICLES

- Some heavy R-hadrons could stop due to large ionization
- Detect interactions out-of-time wrt bunch collisions
 - Special trigger for data acquisition while no collisions
 - main background instrumental and non-beam related
- Crucial to have long data-taking periods not just luminosity
- Signal probability determined for each LHC filling scheme

COMPOSITENESS

EXCITED LEPTONS

- Analysis with 2010 data
 36 pb-1
- Production via Contact Interaction
- Search for resonance in Iγ final state with one additional isolated lepton

4TH GENERATION

$b' \rightarrow t + W$

$b'\bar{b}' \rightarrow tW^-\bar{t}W^+ \rightarrow bW^+W^-\bar{b}W^-W^+$

- At least 1 b-jet, 2 or 3 leptons
- Main backgrounds determined from lepton fake rate in data
- Dominant systematic uncertainty: b-tagging and lepton efficiency
- Main background discrimination from total transverse energy $\sum p_T(\text{jets}) + \sum p_T(\text{leptons}) + \mathbb{Z}_T$

$T' \rightarrow b + W @ LHC$

m_{Q4} > 270 GeV with 35 pb⁻¹ ATLAS-CONF-2011-022

$T' \rightarrow b + W @ TEVATRON$

$t'\bar{t'} \rightarrow WbW\bar{b} \rightarrow \ell\nu bq\bar{q}\bar{b}$

CDF Conf. Note 10395

D0: PRL 107, 082001 (2011)

$T' \rightarrow t + Z/A_0$

$T' \rightarrow t + X$

leptonic and hadronic Z decays and missing energy from lightest neavy neutrino

http://www-cdf.fnal.gov/physics/exotic/r2a/20110603.zzmet/index.html

SUMMARY OF 4TH GENERATION SEARCHES

Decay	Experiment	Method	Excluded mass (GeV)	Luminosity (fb ⁻¹)	Notes
b'→ t + W	CMS	lantan + iat	495	1.1	
	CDF	iepton + jet	372	4.8	
$Q_4 \rightarrow q + W$	ATLAS	dilepton	270	0.035	
T'→ b + W	CMS CDF	dilepton	422	1.1	
		lepton + jet	450	1.1	
			358	5.6	
	D0		285	5.3	
T'→ t + Z	CMS	lepton + jet	417	0.2	
$T' \rightarrow t + A_0$	ATLAS	lepton + jet	410	1.0	m _{A0} < 30 GeV
T'→ t + X	CDF	hadronic	400	5.7	m _X ≤ 70 GeV
$T' \rightarrow t + X$		lepton + jet	360	4.8	m _X ≤ 100 GeV

CONCLUSIONS

RAND SUMMARY

Sh. Rahatlou

 γ , n_{ED} = 2

 γ , n_{ED} = 6

eV

eV

1.03

1.21

2011

2011

Compositeness and Contact Interactions

2011

FANTASTIC IST YEAR AT LHC

- Outstanding performance of detector, trigger, computing, and offline in ATLAS and CMS
 - last chunk of 1 fb⁻¹ dataset delivered last week of June
 - Most of results using full dataset by 3rd week of July!

Good news

- excellent detector performance
 - b-tagging and MET reliable and under control since day I
- surprisingly good data/MC agreement
- Bad news
 - So far only exclusion limits and no discovery
 - No hint of New Physics yet
- LHC superseding Tevatron searches already after 1 year of data

OUTLOOK

- Heavy resonances excluded past 2 TeV
- 4th generation excluded up to ~0.5 TeV
- Increase of x35 in data from 2010 to Summer 2011 improved exclusion limits sometime less than 20%
 - and has not brought any breakthrough discovery yet
- Higher center-of-mass energy perhaps a better option than x10 data at 7 TeV
 - big gains in cross section for several processes
 - modest gain in parton luminosity from 7 TeV to 9 TeV
- Searches in 2012
 - many data-driven methods rely on extrapolation from low to high mass/pt
 - works until nothing seen. What if we actually see events out there?
 - Trigger thresholds rising with luminosity
 - many exotic searches so far relying on generic triggers
 - dedicated triggers will be necessary in 2012

Sh. Rahatlou

ATLAS GRAND SUMMARY

