

Sensori RSD: stato delle produzioni e risultati dai test

FCC WP-Silicon Workshop - Torino

23.4.2024

Federico Siviero

Outline

➤ The RSD design

- Tuning the parameters
- Different paths to position reconstruction
- ➤ The FBK RSD2 production
 - DESY Test Beam results
- > Other AC-LGAD productions
- ➤ The DC-RSD

Outline

➤ The RSD design

- Tuning the parameters
- Different paths to position reconstruction
- The FBK RSD2 production
 - DESY Test Beam results
- Other AC-LGAD productions
- > The DC-RSD

Resistive Silicon Detectors (RSDs, aka AC-LGAD)

- Silicon sensors based on the LGAD technology, implementing AC-coupled resistive read-out:
 - Metal read-out pads coupled to the sensor through an oxide layer
 - Resistive n⁺ layer
 - Continuous gain layer spreading across the active area

cross section of an RSD

Resistive Silicon Detectors (RSDs, aka AC-LGAD)

- Silicon sensors based on the LGAD technology, implementing AC-coupled resistive read-out:
 - Metal read-out pads coupled to the sensor through an oxide layer
 - Resistive n⁺ layer
 - **Continuous gain layer** spreading across the active area

internal charge

cross section of an RSD

Resistive Silicon Detectors (RSDs, aka AC-LGAD)

- Silicon sensors based on the LGAD technology, implementing AC-coupled resistive read-out:
 - Metal read-out pads coupled to the sensor through an oxide layer
 - Resistive n⁺ layer
 - **Continuous gain layer** spreading across the active area

internal charge

Large signals shared among several read-out channels \rightarrow the key for enabling 4D-tracking

- An impinging particle creates *e*-*h* pairs → electrons multiplied in the gain region → direct charge induction on the resistive layer
 - Large (> 5 fC, gain 10-30) & fast (~1 ns) signal
 - No Lateral spread, vertical drift lines (just like an LGAD)

- The signal spreads through the resistive layer, which acts as a current divider
- AC-coupled metal pads connected to the electronics offer the lowest impedance path to the high-frequency part of the signal → pads further away from the hit position see a smaller, wider and more delayed signal

- The signal spreads through the resistive layer, which acts as a current divider
- AC-coupled metal pads connected to the electronics offer the lowest impedance path to the high-frequency part of the signal → pads further away from the hit position see a smaller, wider and more delayed signal

A fraction of the signal may escape → effect minimized by careful choice of design parameters and electrodes geometry (next slides)

• The signal discharges according to the read-out $RC \rightarrow small RC$: large and short positive lobe

<u>Standard read-out:</u> many *pn* diodes interleaved with *p*-stops

Resistive read-out: single, uninterrupted diode

<u>Standard read-out:</u> many *pn* diodes interleaved with *p*-stops

Resistive read-out: single, uninterrupted diode

- **Resistive read-out:** signal shared among multiple read-out channels
- Sharing not effective if read-out signals are small \rightarrow internal gain (LGAD) to achieve large signals

<u>Standard read-out:</u> many *pn* diodes interleaved with *p*-stops

Resistive read-out: single, uninterrupted diode

- **Resistive read-out:** signal shared among multiple read-out channels
- Sharing not effective if read-out signals are small \rightarrow internal gain (LGAD) to achieve large signals

 \rightarrow that's the **RSD** "recipe" to achieve accurate reconstruction of the hit position

- Binary read-out: σ_{Pixel} ~ 0.3·pitch*
- RSD: $\sigma_{RSD} \sim 0.03$ ·pitch

RSDs need fewer read-out channels to achieve same $\sigma_{_{Spatial}}$

*may reach $\sigma_{Pixel} \sim 0.15$ pitch with B field and tilted sensor

- Binary read-out: $\sigma_{pixel} \sim 0.3$ -pitch • RSD: $\sigma_{RSD} \sim 0.03$ -pitch • RSD: $\sigma_{RSD} \sim 0.03$ -pitch • $\frac{Std pixel}{25 \times 25 \, \mu m}$ • $\frac{Std pixel}{1-50}$ • $\frac{FSD}{20 \times 20 \, \mu m}$ • $\frac{FSD}{1-50}$ •
- > 100% fill factor by design
- > RSDs are LGAD sensors \rightarrow **30-40 ps time resolution** (link)

- Binary read-out: $\sigma_{pixel} \sim 0.3$ -pitch • RSD: $\sigma_{RSD} \sim 0.03$ -pitch • RSD: $\sigma_{RSD} \sim 0.03$ -pitch • $\frac{Std pixel}{25 \times 25 \, \mu m}$ • $\frac{Std pixel}{1-50}$ • $\frac{FSD}{20 \times 20 \, \mu m}$ • $\frac{FSD}{1-50}$ •
- > 100% fill factor by design
- > RSDs are LGAD sensors \rightarrow **30-40 ps time resolution** (link)

RSDs are suited as 4D-trackers for future experiments

Tuning the parameters

- Sharing controlled by Z_{Oxide}, Z_{Sheet}, Z_{Bulk}
 - $\circ \quad \text{Usually } \textit{Z}_{\textit{Oxide}}, \textit{Z}_{\textit{Sheet}} ~{<~}\textit{Z}_{\textit{Bulk}}$
- Signals choose the lowest-impedance path

Tuning the parameters

- Sharing controlled by Z_{Oxide}, Z_{Sheet}, Z_{Bulk}
 - $\circ \quad \text{Usually } Z_{\textit{Oxide}}, Z_{\textit{Sheet}} \, <\! < \, Z_{\textit{Bulk}}$
- Signals choose the lowest-impedance path

Increase resistivity $\rightarrow Z_{Sheet}$ increases \rightarrow less signal spread

Tuning the parameters

- Sharing controlled by Z_{Oxide}, Z_{Sheet}, Z_{Bulk}
 - Usually Z_{Oxide}, Z_{Sheet} << Z_{Bulk}
- Signals choose the lowest-impedance path

Increase resistivity $\rightarrow Z_{Sheet}$ increases \rightarrow less signal spread

 $Z_{Bulk} \sim \frac{1}{wC_{Bulk}}$

 $Z_{Oxide} \sim \frac{1}{wC_{Oxide}}$

Z_{Sheet} ~R

Increase oxide thickness and/or decrease pad size $\rightarrow Z_{Oxide}$ increases \rightarrow more signal spread

• Charge sharing with large electrodes

- $\circ~$ Fully exploit charge sharing to reconstruct hit position (relatively low $Z_{\textit{Sheet}}$)
- Low power consumption, plenty of space on the pixel to accommodate the electronics
- Large capacitance, smaller signal amplitude
- Ideal for low-occupancy colliders, such as lepton colliders

• Fine pitch with small electrodes and binary read-out

- Reduced sharing (high Z_{Sheet})
- High number of channels, limited space for electronics
- Spatial resolution determined by electrode size → reconstruction improved with charge-weighted centroid
- Low capacitance
- Ideal for high-occupancy environments, such as hadron colliders

Taken from: K.Nakamura, *Development of tracking detector with capability of precise time and spatial resolution for future collider experiments*, INFN Seminar, Torino (2024)

• Charge sharing with large electrodes

- $\circ~$ Fully exploit charge sharing to reconstruct hit position (relatively low $Z_{\textit{Sheet}}$)
- Low power consumption, plenty of space on the pixel to accommodate the electronics
- Large capacitance, smaller signal amplitude
- Ideal for low-occupancy colliders, such as lepton colliders

• *Fine pitch* with small electrodes and binary read-out

- Reduced sharing (high Z_{Sheet})
- High number of channels, limited space for electronics
- Spatial resolution determined by electrode size → reconstruction improved with charge-weighted centroid
- Low capacitance
- Ideal for high-occupancy environments, such as hadron colliders

KEK-Tsukuba group with HPK successfully develop 100um (50um) pitch Pixel detector 80um pitch Strip detector

Taken from: K.Nakamura, *Development of tracking detector with capability of precise time and spatial resolution for future collider experiments*, INFN Seminar, Torino (2024)

Development of tracking detector with capability of precise time

and spatial resolution for future collider experiments, INFN Seminar, Torino (2024)

Siviero F., Sensori RSD, FCC WP-Silicon Workshop

Today I will focus on this

- Charge sharing with large electrodes
 - $\circ~$ Fully exploit charge sharing to reconstruct hit position (relatively low $Z_{\textit{Sheet}}$)
 - Low power consumption, plenty of space on the pixel to accommodate the electronics
 - Large capacitance, smaller signal amplitude
 - Ideal for low-occupancy colliders, such as lepton colliders

• Fine pitch with small electrodes and binary read-out

- Reduced sharing (high Z_{Sheet})
- High number of channels, limited space for electronics
- Spatial resolution determined by electrode size → reconstruction improved with charge-weighted centroid
- Low capacitance
- Ideal for high-occupancy environments, such as hadron colliders

KEK-Tsukuba group with HPK successfully develop : 100um (50um) pitch Pixel detector 80um pitch Strip detector

Taken from: K.Nakamura, *Development of tracking detector with capability of precise time and spatial resolution for future collider experiments*, INFN Seminar, Torino (2024)

Outline

\succ The RSD design

- Tuning the parameters
- Different paths to position reconstruction

The FBK RSD2 production

- DESY Test Beam results
- > Other AC-LGAD productions
- > The DC-RSD

FBK RSD productions

- In RSD1 we explored the properties of resistive read-out
 - Large squared metal pads, sensors with different pitch & number of pads
- Lessons learnt:
 - If sharing involves too many pads, reconstruction is biased
 - Sharing should involve a fixed number of pads to achieve uniform response
 - Little or no sharing underneath a metal

electrodes involved strongly position-dependent

- Number of pads seeing a signal above noise threshold, as a function of x-y position
- Reconstruction is biased, response non-uniform

FBK RSD productions

- In RSD1 we explored the properties of resistive read-out
 - Large squared metal pads, sensors with different pitch & number of pads
- Lessons learnt:
 - If sharing involves too many pads, reconstruction is biased
 - $\circ~$ Sharing should involve a fixed number of pads to achieve uniform response
 - Little or no sharing underneath a metal

electrodes involved strongly position-dependent

RSD1 vs RSD2

- 2D-maps showing the sum of 4 pad amplitudes, obtained with TCT laser setup
- Qualitative measurement of the signal fraction escaping from the pixel ("full" signal is observed when shooting close to the electrodes)
- Pmax in the bottom plot is ~constant across the whole pixel, whereas large differences are seen in the top plot
- → Extended cross-shaped electrodes are ideal to achieve very uniform response within the pixel

Courtesy of UC Santa Cruz

Results on RSD2 from a DESY Test Beam

- 6x6 RSD2 matrix with cross-shaped electrodes, 450um pitch
 - 14 pads read out, the others grounded
- Read-out with FAST2 ASIC (EVO1, EVO2 are slightly different front-ends)
- Measured with 5 GeV/c electrons

Results on RSD2 from a DESY Test Beam: spatial resolution

- Achieved $\sigma_{\text{Spatial, RSD}}$ = 15 um with a 450um-pitch pixel sensor (gain~35)
- With binary read-out this is achieved with ~45um pitch \rightarrow 100 less read-out channels
- Brief description of reconstruction method in the backup

Results on RSD2 from a DESY Test Beam: time resolution

- Achieved $\sigma_{\text{Time, RSD}} = 49 \text{ ps} (\text{gain} \sim 35)$
- Brief description of reconstruction method in the backup

Outline

\succ The RSD design

- Tuning the parameters
- Different paths to position reconstruction
- ➢ The FBK RSD2 production
 - DESY Test Beam results
- Other AC-LGAD productions
- ➤ The DC-RSD

Developed for EIC

Other AC-LGAD productions

• Results from a FNAL test beam (link) on BNL production

BNL sensor: 1.7mm strip, 100um pitch (80um metal - 20um interpad)

- σ_{Spatial} = 5-10 um along x-axis (much larger along y)
- σ_{Time} = 30-40 ps
- Only ~30% of active area (central part) used for the reconstruction

Developed for EIC

Other AC-LGAD productions

• Results from a FNAL test beam (link) on HPK production

HPK sensor: 500x500 um² pads, variable interpad gap

- σ_{Spatial} = 15-40 um (strongly position-dependent)
- σ_{Time} = 30-40 ps
- Only the area framed used in the reconstruction (binary read-out elsewhere)

Developed for EIC

Other AC-LGAD productions

• Results from a FNAL test beam (link) on HPK production

HPK sensor:

 $500x500 \text{ um}^2 \text{ pads},$

variable interpad gap

- HPK adopted a different philosophy compared to FBK: use large pads fully covered with metal, to keep the signal confined in 2-3 pads
 - Main drawback: if pad is large signal sharing may not occur in the central part of the electrode, getting back to binary read-out (+ non-uniform response)
 - ..but, more suited for environments with high occupancy (basically no signal escaping beyond the first neighboring pads)

Other AC-LGAD productions

- AC-LGAD producers are growing more and more
- FBK, BNL, HPK, IHEP, CNM (maybe others) have produced or are going to produce these sensors
- EIC has an ambitious program to develop and use the RSD, based on US-Japan collaboration
- CMS is considering to use RSDs in the tracker forward disks (upgrade for Phase3 HL-LHC)

Outline

\succ The RSD design

- Tuning the parameters
- Different paths to position reconstruction
- > The FBK RSD2 production
 - DESY Test Beam results
- > Other AC-LGAD productions

➢ The DC-RSD

DC-RSD

- Future production devoted to upgrading the RSD design, addressing some weaknesses of the AC design:
 - Possible baseline fluctuations on large devices
 - The bipolar nature of the signals, with rather long tails during the discharge
 - $\circ~$ The fact that is not possible to 100% confine the signal
- In DC-RSD, the coupling oxide is removed \rightarrow DC-coupling of the electrodes to the resistive layer
 - Single diode, signal sharing and 100% fill factor are still there, just like the AC-RSD

Siviero F., Sensori RSD, FCC WP-Silicon Workshop

DC-RSD

*AC-design likely not ideal for high-occupancy

- DC-RSD may be suited for either low- and high-occupancy tasks*
 - Multiple hits should not affect the baseline
 - No signal dispersion, reconstruction of a particle hit involves a predetermined number of pads
 - $\circ~$ No bipolar signal (i.e. slow discharge) \rightarrow 1 ns-long pulses
- No signal dispersion + No baseline fluctuations \rightarrow improved SNR ratio
- Due to their characteristics, DC-RSD with O(cm²) active surface are feasible

Siviero F., Sensori RSD, FCC WP-Silicon Workshop

DC-RSD...with Trenches!

- In a slightly different version of the DC-RSDs, trenches would be implemented to confine the signals:
 - Fill factor < 100%, but signal completely confined within a pixel, further pushing the sensors performance in terms of position reconstruction
 - FBK TI-LGAD productions clearly showed that trenches of a few um are feasible without affecting device operation

96% signal confinement in the pixel

3D-TCAD simulation comparing DC-RSD with (right) and without (left) trenches

100% signal confinement in the pixel

Siviero F., Sensori RSD, FCC WP-Silicon Workshop

DC-RSD

- DC-RSD development started in the framework of the 4DinSiDe (PRIN, 2017) and is now supported by INFN Gruppo 5 (4DSHARE experiment) and PRIN project 4DSHARE (started October '23)
- FBK is currently manufacturing the first production of DC-RSD (w and w/o trenches)
 reticle design completed, production just started: we expect first sensors in Fall 2024

 \rightarrow stay tuned...DC-RSD are coming soon!

Siviero F., Sensori RSD, FCC WP-Silicon Workshop

Summary & Outlook

- The principle of resistive read-out coupled to the LGAD technology can enable accurate 4D-tracking
 - Large & fast signals shared among a constant number of pads
 - 100% fill factor
 - An exciting R&D field for future colliders, included FCC
- Resistive Silicon Detectors (RSDs) are one example of this promising technology
 - Achieved 15 um spatial resolution and 50 ps time resolution when measured with 5 GeV/c electrons
 - \circ Large, cross-shaped electrodes \rightarrow ideal for low-occupancy applications
- Many other AC-LGAD / RSD producers out there!
 - HPK, BNL are working hard on AC-LGADs for EIC, for instance
 - Using large metalized strip/pixel sensors and achieving < 20 um spatial resolution and < 40 ps time resolution
 - CNM and IHEP are also developing their own resistive sensors
- CMS is considering RSDs for the Phase3 Upgrade of HL-LHC
- What's next: DC-RSD, opening the way to high-occupancy applications with RSDs

Position reconstruction: Sharing Template method

Step 1:

Produce a look-up table with a 10x10 micron² cell granularity of the sharing pattern among the 4 electrodes. The look-up table is computed with test beam data, summing up the data from the 7 pixels.

Step 2:

For each event, compare the measured signal sharing with the look-up table to find the cell that best reproduces the measured sharing

Step 3:

A local fit centered on the cell determines the hit location.

Time reconstruction

•

