Opzioni per un timing layer dedicato con scintillatori e SiPM a FCC

Marco Lucchini

22-23/04/2024 RD_FCC WP Silicon Mini-Workshop

Why and what timing at FCC colliders?

- Three use-case categories for precision timing in collider detectors: (see <u>T.Tabarelli's talk at Snowmass 2022</u> for a sharp overview of the topic)
 - Vertex timing (from track timing)
 - Time-of-flight
 - Calorimetry (timing of neutrals and temporal structure of showers)
- Use-cases and detector requirements for e⁺e⁻ and hh are different, focus on:
 - MIP timing *before* the calorimeter
 - e+e- collider environment (closest time horizon)
 - Scintillator based timing detectors capitalizing the past ten year efforts to design and integrate the Mip Timing Detector in the CMS experiment [CMS-MTD-TDR]

Vertex timing for pileup mitigation at hadron colliders

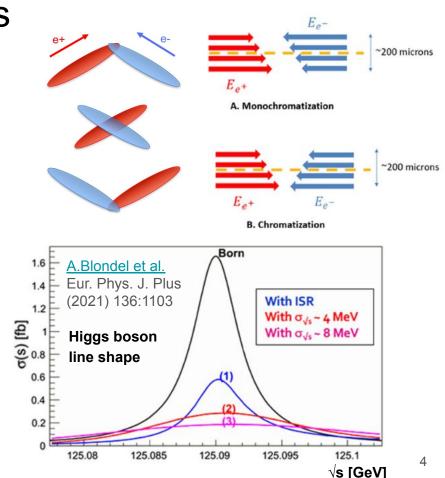
-3 cm

z = 0 +3 cm

Up to **200 vertices** every 25 ns spread over **4.5 cm** in space

Vertices start to spatially overlap and become difficult to distinguish at HL-LHC with usual tracking algorithms

I HITTELL AT LA IN IN

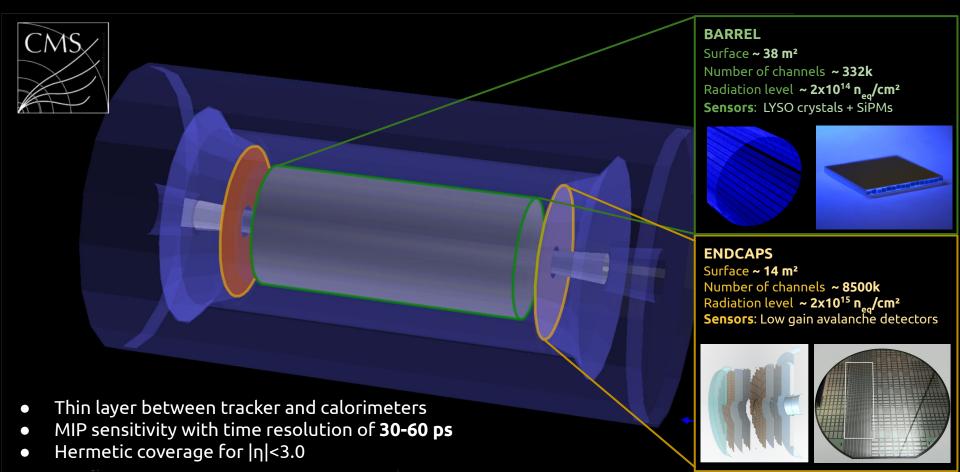

At HL-LHC, efficiencies and background back to LHC level with σ, ~30 ps Most likely required also at FCC-hh but not FCC-ee

All I LIT I II.

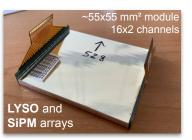
Snapshot of a bunch crossing at HL-LHC


Vertex timing at e⁺e⁻ colliders

- For beam optics "chromatization" schemes, the particle energy correlates with the longitudinal particle position in the bunch, and thus to the collision time
- Vertex timing with O(5 ps) precision offers a √s scan at fixed centre-of-mass energy (e.g. scan of the Higgs resonance for a run at the Higgs pole)
 [Azzi and Perez, FCC-ee, 2020]
- Vertex time resolution ($\sigma_{VTX} \sim \sigma_{TRK} / \sqrt{N_{tracks}}$) and clock synchronization << 5 ps

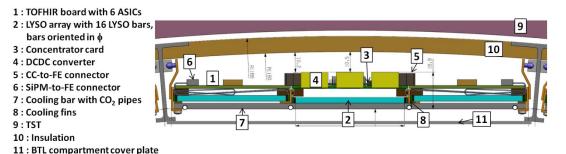


Time-of-flight detector

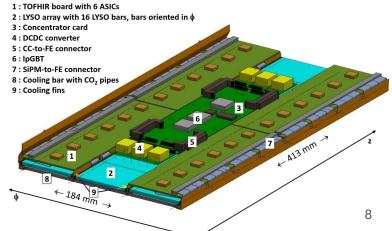

- Potential for direct measurement of Long Lived
 Particles (LLPs) mass by reconstruction of the time of the displaced vertices
 - The large multiplicity of final state topologies softens the requirements on time resolution
 - Will this remain of interest after HL-LHC?
- Hadron identification for flavour physics and jet flavour tagging
 - A compelling physics case for e+e- colliders [Bedeschi et al, 2202.03285]
 - A TOF detector providing an "unchallenging" resolution of O(100 ps) at 2 m could cover the "π/K cross-over window" at ~ 1 GeV, where dE/dx is blind

The Mip Timing Detector: an example from CMS upgrade

Rough comparison of MTD technologies



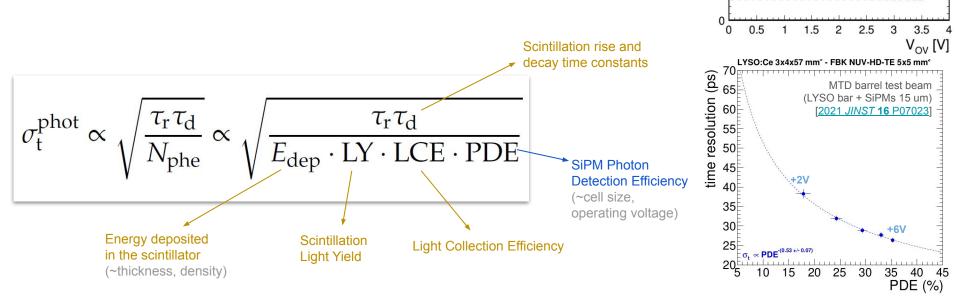
[from MTD TDR]	Barrel region	Endcap region
Total surface	38 m²	16 m²
Sensor technology	LYSO+SiPMs	LGADs
Highest radiation level [1 MeV n.eq./cm ²]	2e14	2e15
Cost / m²	~250 k€	~700 k€
Power consumption / m ²	~1 kW (50% from radiation damage)	~5 kW
Channel count / m²	~9k	~530k
Radiation length [X0]	0.3-0.5 (dominated by sensors)	0.15 (dominated by mechanics/services)
Time resolution (before/after irrad.)	30 / 60+ (limited by radiation damage)	40 / 40 (contribution from electronic noise)


- Different technologies are best suited for different environments/constraints
- In the absence of heavy radiation damage LYSO+SiPM offer a viable option for the instrumentation of large surfaces with contained cost, channel count and power budget

Detector integration challenges - BTL

- **Space**: sensors, electronics and services had to fit within a **4 cm radial envelope** (detector will be inserted inside the new tracker support tube!)
- CO₂ based system to extract heat from SiPMs and electronics and cool down to -35°C (only required to mitigate radiation damage effects)
- **Radiation length** in front of ECAL(~0.4 X₀) has no impact on calorimeter performance

BTL sensors highlights


- 3x3x50 mm³ LYSO:Ce scintillating crystals packaged and wrapped in arrays already from manufacturer (10+ vendors worldwide)
- Custom developed Silicon Photomultiplier arrays optimized for timing and radiation tolerance (2 vendors tested)
- Mini thermoelectric coolers integrated with SiPM package for "smart" temperature control

A. Bornheim et al 2023 JINST **18** P08020 https://doi.org/10.1088/1748-0221/18/08/P08020

Resolution drivers in scintillator+SiPM timing detectors

- *Without* radiation damage time resolution in BTL is limited by
 - Electronic noise ~15 ps
 - Photo-statistics (sensors) ~ 22 ps
- There are handles to customize the detector design

CMS Phase-2 Preliminary

data

noise

-stochastic

Type 2

25 µm

120

100

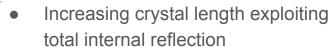
80

60

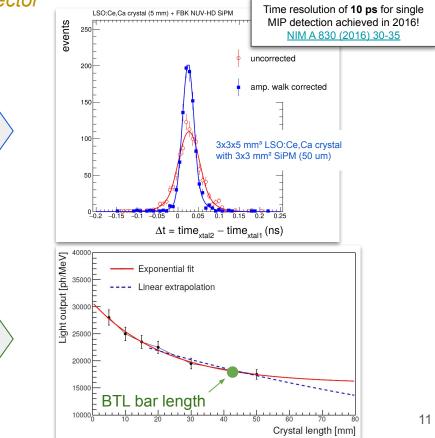
40

20

time resolution [ps]

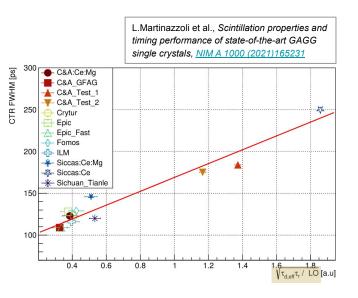

Flexibility and optimization in scintillator+SiPM timing detectors

Keep the material fixed and work on design/photodetector

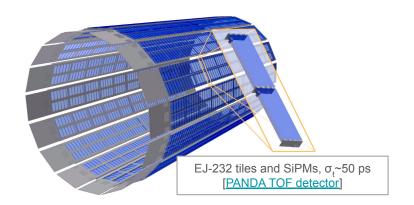


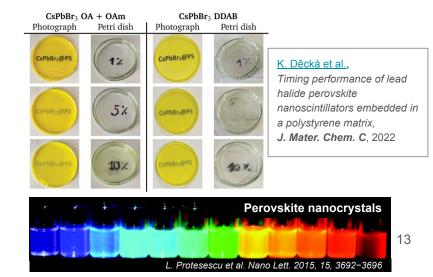
ntegration

- Operation at larger over-voltage
 - Use of SiPMs with larger cell size
 - Increase granularity
 - Increase crystal thickness

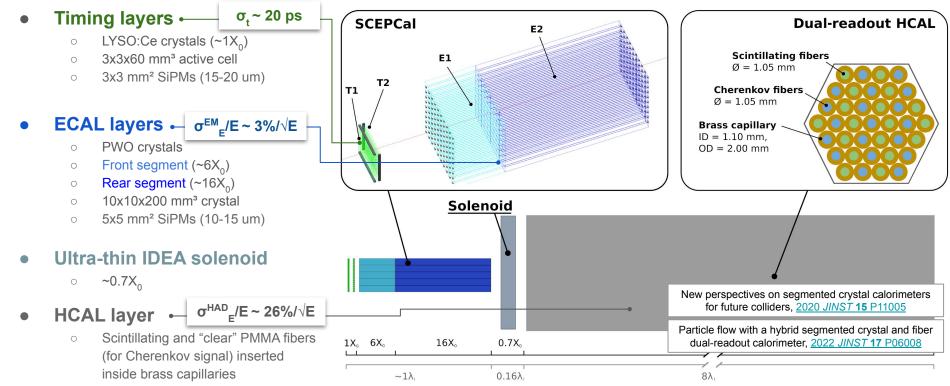

 Reduce SiPM channel count, cost and power consumption

Flexibility and optimization in scintillator+SiPM timing detectors


Keep the detector design fixed and optimize the scintillator

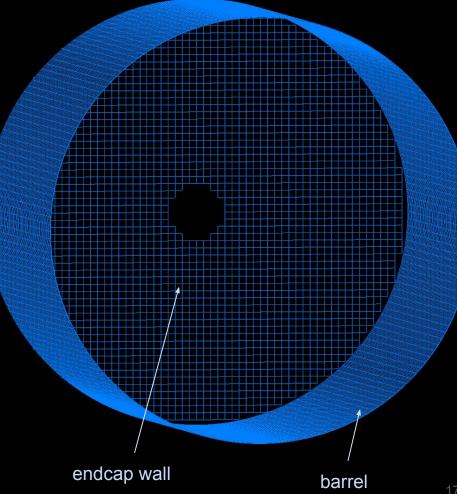

- Key features of LYSO for a timing detector
 - Good radiation tolerance
 - Competitive cost and mass production capability
 - Emission wavelength matching common SiPM technologies
 - Easy to handle (not hygroscopic, not too brittle)
 - Good scintillation properties for timing $\sim \sqrt{(T_R T_D / LY)}$
- Competing with LYSO: faster, brighter, denser
 - Exploit **bandgap engineering** to push against scintillator limits, e.g. with multicomponent garnet crystals
 - O Exploiting ultra fast-emission processes
 (Cherenkov, hot intraband luminescence, cross-luminescence)
 →typically more in the UV→challenging photodetection

Crystals vs other scintillators


- Plastic scintillators with sub-ns decay time broadly explored and exploited for timing (and also for sampling calorimeters)
 - Less radiation tolerant than crystals but perfectly fine for an e+e- collider!
 - Lower energy deposited by MIPs
 - Could reduce timing layer cost by ~20% compared to crystals
- Nano scintillators with sub-ns scintillation may also represent a further leap towards precision timing
 - A recent stimulating frontier with open challenges for detector applications (medium opacity, low density, ...)

Maximum information crystal calorimeter for IDEA

- **Precision timing** for charged particles and EM showers
- Higher segmentation for PID and particle flow algorithms
- SiPM readout for contained cost and power budget

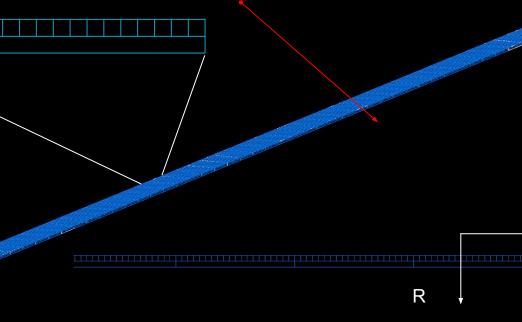

Summary

- MIP timing technologies for vertex tracking and TOF developed for HL-LHC experiments can already provide a time resolution that satisfies requirements at e+e- colliders (σ_t ~ 20-100 ps)
- **Optimization** of a scintillator+SiPM based timing detector **for an e+e- collider** (low radiation environment) **can offer further improvement** of time resolution (<20 ps) at lower cost (<20%) compared to applications at HL-LHC
- A scintillator + SiPM timing layer can offer a more natural integration with a homogeneous optical calorimeter (it can provide a precise energy measurement and exploits similar technologies)
- Integration challenges, cost and power consumption are a big challenge and will most likely drive the sensor technology choice (LYSO+SiPMs chosen by MTD as more cost effective and less power hungry than LGADs in the "low" radiation region)

Additional material

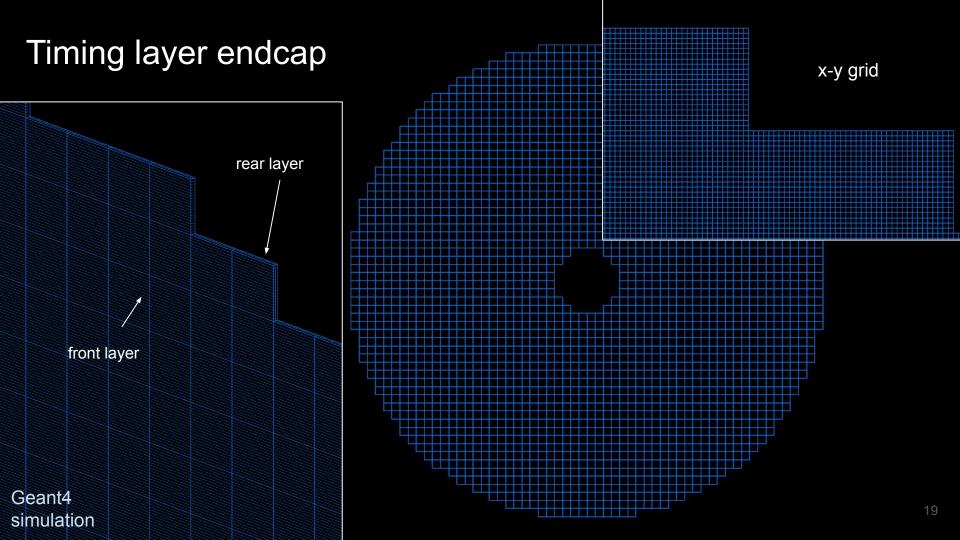
Timing layers

- Inner radius: 1775 mm
- Outer radius: 1795 mm
- Module size: 60x60x6 mm³
- Crystal size: 60x3x3 mm²

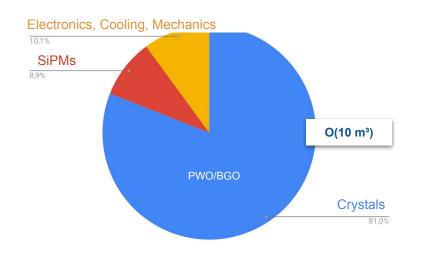


Timing layer barrel

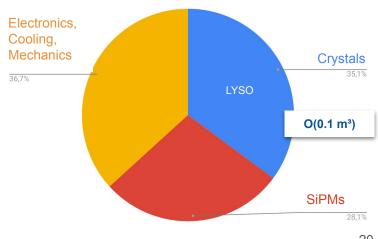
• Trays of modules running along z


Geant4

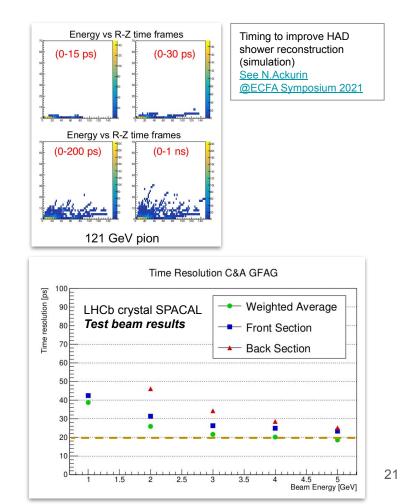
simulation


R

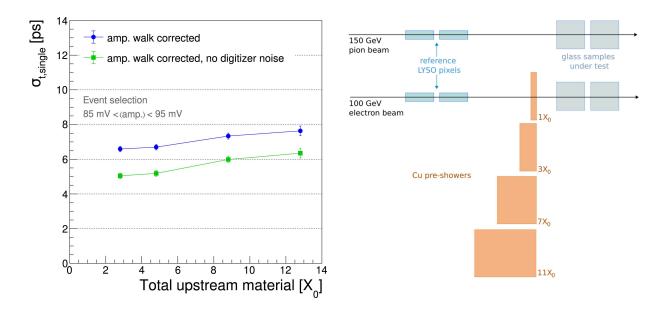
Φ



Costing exercise for an **hermetic EM homogeneous calorimeter** (R=1.8 m, 1 cm² transverse granularity, 2 longitudinal layers, 22X₀, ~600k channels / layer)



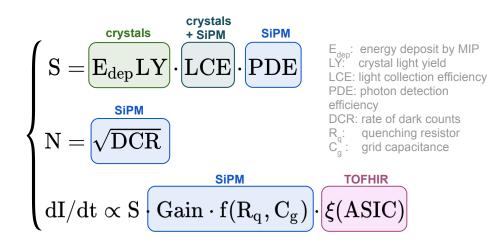
Costing exercise for an **hermetic timing layer** (design à la MTD BTL)

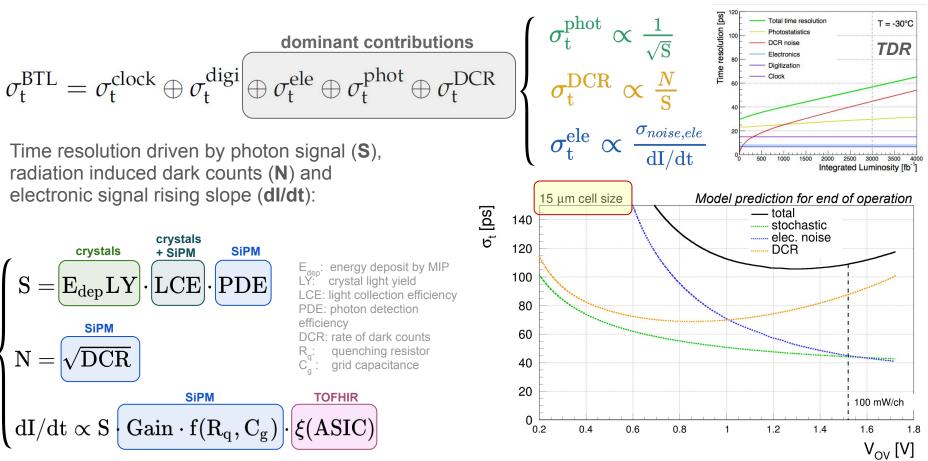

Timing inside calorimeters

- **Benefits**: timing for neutral particles and information on the time development of EM and HAD showers
- Typically implies dealing with 'large' energy deposits (many MIPs per active element)
- State-of-the-art examples (EM showers)
 - Time resolution of ~30 ps for E>30 GeV
 with the CMS ECAL in Phase 2 Upgrade
 - PWO+APDs
 - Sub-20 ps time resolution for E>5 GeV with the crystal SPACAL for the LHCb upgrade
 - GFAG+PMTs

Resolution to electromagnetic showers

 Time resolution of O(5 ps) for EM showers within reach (glasses+SiPMs) at single sensor level →most likely a challenge to scale it up (clock, electronics, etc.)


<u>Sub-10 ps time tagging of</u> <u>electromagnetic showers with</u> <u>scintillating glasses and SiPMs</u>


Nuclear Inst. and Methods in Physics Research, A 1051 (2023) 168214

Time resolution drivers in BTL [updated]

dominant contributions

Time resolution driven by photon signal (**S**), radiation induced dark counts (N) and electronic signal rising slope (dl/dt):

